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ABSTRACT: We examine a non-relativistic limit of D-branes in AdS;xS° and M-branes
in AdS, /7><S7/ 4. First, Newton-Hooke superalgebras for the AdS branes are derived from
AdSxS superalgebras as Inonii-Wigner contractions. It is shown that the directions along
which the AdS-brane worldvolume extends are restricted by requiring that the isometry on
the AdS-brane worldvolume and the Lorentz symmetry in the transverse space naturally ex-
tend to the super-isometry. We also derive Newton-Hooke superalgebras for pp-wave branes
and show that the directions along which a brane worldvolume extends are restricted. Then
the Wess-Zumino terms of the AdS branes are derived by using the Chevalley-Eilenberg
cohomology on the super-AdSxS algebra, and the non-relativistic limit of the AdS-brane
actions is considered. We show that the consistent limit is possible for the following branes:
Dp (even,even) for p = 1 mod 4 and Dp (odd,odd) for p = 3 mod 4 in AdS5xS°, and M2
(0,3), M2 (2,1), M5 (1,5) and M5 (3,3) in AdS;xS” and S* x AdS;. We furthermore present
non-relativistic actions for the AdS branes.
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1. Introduction

The AdS/CFT conjecture [[] predicts that type IIB superstring theory in AdS;xS?® is dual
to the four-dimensional N' = 4 SU(N) super Yang-Mills theory in large N limit. Though
it is too hard to analyze the full AdS superstring, Berenstein-Maldacena-Nastase (BMN)
found a nice way to extract a solvable subsector (referred to as BMN sector) [B]. Taking
this subsector corresponds to the so-called Penrose limit for the AdS geometry [{], and
the relevant symmetry to the BMN sector is the pp-wave superalgebra, which is obtained
as an Inonii-Wigner (IW) contraction [[f] of the super-AdSsxS® algebra [[] (see [f] for the
eleven-dimensional cases).

A non-relativistic limit of strings in flat spacetime provides another solvable sector [
(see also [§]). This limit is a truncation of the full theory in the sense that light states
satisfying a Galilean invariant dispersion relation are kept and the rest decouples. The
relevant symmetry is the Galilean limit of the Poincaré algebra. The non-relativistic flat
branes are examined in [J-[[J. In [[4, [J these studies have been extended to branes
in AdS spaces. In particular a Lorentzian F-string in AdSsxS®, i.e. AdSs brane, was
examined in [[]. They showed that the F-string theory in AdS5xS® is reduced to a free
theory in the non-relativistic limit, and so the resulting theory is exactly solvable. In the
non-relativistic limit, the super-AdSsxS® algebra is also contracted to the Newton-Hooke
(NH) superalgebra for the F-string. Then the isometry of the AdSe-brane worldvolume,
the AdS, algebra so(1,2), and the Lorentz symmetry in the transverse space, so(3)xso(5),
extend to a super-isometry algebra.

In this paper we consider D-branes in AdSsxS® and M-branes in AdS, /7% S7/4. First we
examine D-branes in AdS5xS°. In addition to AdSs brane, there exist various AdS branes
in AdS5xS°, (m,n) branes of which worldvolume extends along m directions in AdSs
and n-directions in S°. In our previous works [If-[L9], we have classified some possible
configurations of the D-branes in AdSsxS® by examining the x-variation surface terms of an
open superstring. Here we will classify possible configurations of D-branes by requiring that
the isometry of the AdS brane worldvolume AdS,, xS™ (H™ xS"™) and the Lorentz symmetry



in the transverse space E>~™ x E>~" (E4~™! x E5~"), i.e., so(m — 1,2)xso(n + 1) xso(5 —
m)xso(5 — n) for a Lorentzian brane and so(m, 1)xso(n + 1)xso(4 — m,1)xso(5 — n) for
a Euclidean brane, naturally extend to the super-isometry. The result surely contains our
previous result, but some new configurations are allowed to exist. We furthermore derive
the NH superalgebras for these branes as IW contractions of the super-AdSsxS® algebra.
The similar analyses are applied to branes in IIB pp-wave, and derive the NH superalgebras
for these branes as IW contractions of the IIB pp-wave superalgebra.

The Wess-Zumino (WZ) terms for p-branes in flat spacetime can be classified 0] as
non-trivial elements of the Chevalley-Eilenberg (CE) cohomology [R1]. This is generalized
to D-branes in [Rg, by introducing an additional two form which corresponds to a
modified field strength of the background B field. Here we examine the WZ terms for AdS
branes by using the CE cohomology on g of the superspace

G =PSU(2,2/4)/(SO(4,1) x SO(5)), i.e. “super-AdSsxS®”/“Lorentz” .

We show that the WZ terms of AdS branes can be classified as non-trivial elements of the
CE cohomology, except for the WZ term of a string which is a trivial element [24, PJ].

Expanding the supercurrents with respect to the scaling used in the IW contraction,
we obtain the non-relativistic limit of the brane action. In comparison to the Penrose limit
in which the leading terms in the expansion contribute to the pp-wave brane actions (see
appendix [J), in the non-relativistic limit the leading order terms of the Dirac-Born-Infeld
(Nambu-Goto) part and the WZ part cancel out each other, and the next-to-leading order
terms contribute to the non-relativistic action. We find that the consistent non-relativistic
limit exists only for Dp (even, even) for p = 1 mod 4 and Dp (odd, odd) for p = 3 mod 4 in
AdS5xS°. We derive the non-relativistic AdS D-brane action and find that it is reduced to
a simple action by fixing the k-gauge symmetry and the worldvolume reparametrization.
While the non-relativistic AdS D-string action is a free field action, the non-relativistic
AdS Dp-brane action (p > 1) contains an additional term which originates from the flux
contribution in the WZ term. The non-relativistic flat D-brane actions obtained in [[J] are
reproduced as a flat limit of the non-relativistic AdS D-brane actions.

Next we examine a non-relativistic limit of M-branes in AdS, /7><S7/ 4. The NH super-
algebra for M-branes are derived as IW contractions of the super-AdS, /7><S7/ 4 algebras.
To achieve this, we show that the directions along which a brane worldvolume extends are
restricted by requiring that the isometry of the AdS brane worldvolume and the Lorentz
symmetry in the transverse space naturally extend to the super-isometry, and that possible
M-branes are classified. As expected, the configurations obtained in [R§, P7 by examin-
ing the k-variation surface term of an open supermembrane are contained in the above
classification. The similar analyses are applied to branes in M pp-wave, and derive the
NH superalgebras for these branes as IW contractions of the M pp-wave superalgebra. We
obtain the WZ terms of AdS branes as non-trivial elements of the CE cohomology on g of
the superspace

G =0Sp(8]4)/(SO(3,1)xSO(7)) or OSp(8*]4)/(SO(4)xSO(6,1)).



We find that the non-relativistic limit exists for M2 (0,3), M2 (2,1), M5 (1,5) and M5
(3,3) in AdSyxS” and S* x AdS;. By taking the non-relativistic limit of these AdS brane
actions, we derive the non-relativistic M-brane actions in AdS, /7><S7/ 4. It is shown that by
fixing the x-gauge symmetry and the reparametrization the non-relativistic action for AdS
M2- and AdS M5-branes is reduced to a simple action which contains an additional term
originating from the flux contribution of the WZ term. The non-relativistic flat M2-brane
action given in [[[1] is reproduced as a flat limit of the non-relativistic AdS M2-brane action.

This paper is divided into the two parts. Sections 2-5 are devoted to studies of AdS
branes in ten-dimensions, and those in eleven-dimensions are examined in sections 6-9. In
section 2, NH superalgebras for branes in AdS5xS® are derived as IW contractions of the
super-AdS5xS® algebra. It is shown that the directions along which the AdS brane world-
volume extends are restricted by requiring that the isometry on the AdS brane worldvolume
and the Lorentz symmetry in the transverse space naturally extend to the super-isometry.
The similar analyses are applied to branes in IIB pp-wave in section 3. WZ terms of AdS
branes are derived by using the CE cohomology on the AdSxS superalgebra in section 4.
Examining a non-relativistic limit of AdS brane actions, we obtain non-relativistic AdS
brane actions in section 5. From section 6, M-theory in AdS, /7><S7/ 4 is examined. We de-
rive NH superalgebras for M-branes as IW contractions of the super-AdS, /7><S7/ 4 algebras
in section 6. The similar analyses are applied to branes in M pp-wave in section 7. After
deriving WZ terms of AdS M-branes by using the CE cohomology on the AdS, /7><S7/ 4
superalgebras in section 8, we examine the non-relativistic limit of AdS M-brane actions
in section 9. The last section is devoted to a summary and discussions.

The supervielbeins and the super spin-connections are given in appendix . In ap-
pendix [B, the k-symmetry of Euclidean/Lorentzian brane actions is derived. Our construc-
tion of brane actions is applicable to branes in a pp-wave by taking the Penrose limit instead
of non-relativistic limit. In fact, we derive brane actions in the pp-wave in appendix [J.

2. NH superalgebra of branes in AdS;xS®

The super-AdSs xS® algebra, psu(2,2|4), is generated by translation P4 = (P,, P,), Lorentz
rotation Jap = (Jup, Jorpy) and Majorana-Weyl supercharges Qr(I = 1,2) as

[Pas Po] = N Jap s [Par, Py] = =22 Jaryy

[Paa ch] = nach - nach, [Pa’a Jb’c’] = na’b’Pc’ - na’c’Pb’ s

[Jaba ch] = 77chaLd + 3-terms ) [Ja’b’a Jc’d’] = 77b’c’Ja’d’ + 3-terms )

A ) =~ 1
[Qr,Pa] = —§QJ(W2)J1FA, [Qr,JaB] = 5@l an,
{Q1,Qu} = 2iCT A5, yhy Pa — iACT*B (i0) 1sh Tap (2.1)

where a = 0,...,4 and o’ = 5,...,9 are vector indices of AdSs and S® respectively. The
gamma matrix T4 € Spin(1,9) satisfies

{rA4, Py =2948 (@HT = —crict, ¢T'=-C (2.2)



where C is the charge conjugation matrix. We use almost positive Minkowski metric n4p
and define

Tg=(-ToZ,TwJ), Tap=(-TuI,TyyJ), I=T024 g 56789

1
Qrhy =Qr, hy= 5(1 +T11), T'ii=Tog, (2.3)

and A = 1/R where R is the radii of AdSs and S°.
By using an element g € PSU(2,2|4), a left-invariant (LI) Cartan one-form is defined as

1
Q=g ldg=LAP4 + 5Lf‘“—“fJ,LlB +QrL . (2.4)
Then the Maurer-Cartan (MC) equation, which is satisfied by LI Cartan one-forms
~ 1 N N ~ ~
A BrC A A
dL :§LLféB , Q=L"Ty, (2.5)

is equivalent to the superalgebra [T, T} = f; BOTO' The Jacobi identities f[ i BD f‘ Dl O)E =
0 of the commutation relation of the superalgebra is stated as the nilpotency of the differ-
ential, d> = 0. Thus (R-1)) is equivalent to

dLA = —npcLAPLE +iLTAL,
dL® = —N?LOLY — 5 L°LY + iALT®Tioo L,
dLa/b/ _ +>\2LalLbl _ nc/d/Lcla/Lb/d/ _ i)\fzra/b/jiUQL,
Al an 1
AL = —§LAI“AZ'02L - ZLABFABL . (2.6)
We derive NH superalgebras for AdS branes as IW contractions of the super-AdSsxS®

algebra.
First we consider the bosonic subalgebra. Let us introduce the following coordinates:

A=Ap,..., Ay, A=Api1,..., Ay, (2.7)

where A = (@,a’) represent the worldvolume directions of the AdS brane. When the
worldvolume extends along m directions in AdSs and n directions in S, we call it an
(m,n)-brane. We rescale the generators as follows:

1
PAHQPA7 Jip — =Jip - (2.8)

The limit 2 — 0 leads to the NH algebra for the AdS brane

Py, Pl = XJg5, [Pw,Pyl=—-\Juy,
Pa,P] — A2J5Q7 [PE/7PQ/] — —)\Zja/b/ 5

[

[

[P1.Jsel =nagPe —nacPs. [Pa,Jscl =napPc —nacPs,

(P4, Jpc) =nagPc

[Jig,Jep) =nipdge + 3-terms,  [Jap, Jop] = napJpc + 3-terms,
(JapsJepl =ngedap —naceps  [Jas:Jepl =nBpJea —napdep - (2.9)



P 1-brane 3-brane 5-brane 7-brane 9-brane
01, 03 (2’0)a (Oa2) (4’2)7 (274)

i09 (3,1), (1,3) (5,3), (3,5)

1 (1,1) (5,1), (3,3), (1,5) (5,5)

Table 1: Branes in AdS;xS°

This is the NH algebra of a brane given in [[[4] (see also [2g]). The NH algebra contains two
subalgebras. One is the isometry of (m,n)-brane worldvolume generated by {Pj,Ji5},
the AdS,,xS™ algebra so(m — 1,2)xso(n + 1) for a Lorentzian brane and the H™ xS"
algebra so(m,1)xso(n + 1) for a Euclidean brane. The other is the Poincaré algebra,
iso(b — m)xiso(5 — n) for a Lorentzian brane and iso(4 — m, 1) xiso(5 — n) for a Euclidean
brane, generated by {Pa, Jap} which is the isometry of the transverse space ES—™ x E5—™
and E4~"1 x E5~" respectively.

Next, we consider the fermionic part. Let us introduce a condition
O=MO  with M= (T g, (2.10)

where 62(—1)[#%2 =1 for M? = 1. The 2 x 2 matrix p is determined below. As 6 = h, 0,
[M,hy] =0 is required so that p = odd. We demand that M satisfies following relations

MTA =T4M, (2.11)
M'TABigy = TABigy M , (2.12)
where M’ = C~'MTC. If these are satisfied, the isometry of the AdS brane worldvolume
and the Lorentz symmetry in the transverse space, so(m—1,2)xso(n+1)xso(5—m)xso(5—
n) for a Lorentzian brane and so(m, 1)xso(n + 1)xso(4 — m, 1) xso(5 — n) for a Euclidean
brane, naturally extend to the super-isometry as will be seen below. It is straightforward
to see that the first condition is satisfied by p? = p for p = 1 mod 4 and by p! = —p
for p = 3 mod 4. The second condition restricts the direction along which branes extend.
Since, for p = 1(p = 1 mod 4) and p = io2(p = 3 mod 4), we derive
M'TABigy = (=1)TPigy M (2.13)
we have (odd,odd)-branes. d denotes the number of Dirichlet directions contained in AdSs.
On the other hand, for p = 01,03 (p =1 mod 4), since
MTABigy = —(—1)iT4Bj0y M (2.14)
(even,even)-branes are allowed. In both cases, we have ¢ = y/—s and

M =—-M . (2.15)

We summarize branes in table [ The 9-brane is nothing but AdS5xS? itself as M = h, in
this case. This table shows possible 1/2 supersymmetric subspaces which are not necessarily



1/2 BPS Dirichlet branes. The (even,even)-branes with p = 1 mod 4 and (odd,odd)-branes
with p = 3 mod 4 are 1/2 BPS Dirichlet branes of F- and D-strings in AdS;xS® derived
in [[§-[§]," while (odd,odd)-branes with p = 1 mod 4 are not 1/2 BPS Dirichlet branes.
In the presence of gauge field condensates, see [[I9]. As will be seen in section 4, we find
consistent non-relativistic limits for 1/2 BPS AdS branes.

Let us decompose Q¢ with the projection operator

Pi:%(liM) as Q=0Q++Q-, Q+P+=0Q+, (2.16)

and rescale fermionic generators as

Qi Qi) Q — 5@ (2.17)

Taking 2 — 0 leads to (anti-)commutation relations

Ao~ Ao~ A o~
[PA= Q—I—] = §Q+PAZ‘72 s [Pév Q-f—] = §Q—FA202 ) [PA7 Q—] = §Q—PAZ‘72 )

1 1 1
[Jap, Q=] = 5Q+lap, [Jap, Qs] = 5Q+Lap, [Jap @+l =5Q-Tip,
{Q4+,Qs} = 2iCT 0, Py P — iXCTAPiooh Py J 55 — iXCTABiooh Py g,
{Q+,Q_} = 2iCTAh, P_Py — 20INCT4Eigoh P_J 1 - (2.18)

In summary, we have derived the NH superalgebra for AdS brane, (R.9) and (R.1§), as an
IW contraction of psu(2,2[4). The NH superalgebra for an F-string [[[5] is contained as the
p =1 case.

We note that generators Py, Jz5, Jap and @+ form a super-subalgebra

[Pa, B5) = Mg, [Pa, Pyl = =N Jaw . [Pa.Jpel = napFe —nacPs

i, Jepl =nipdge + 3-terms,  [Jap, Jop] = napJpc + 3-terms,
Ao~ 1 1

[Px,Q4] = 5@+l zi02, [Jap, Q+] = 5Q+Tas. [JaB, Q4] = 5@+Tas,

{Q4, QY = 2iCT 0, Py Py — iXCTABiooh Py 5 — iACTABioyh Py Jag, (2.19)

which is a supersymmetrization of so(m — 1,2)xso(n + 1)xso(5 — m)xso(5 — n) for a
Lorentzian brane and so(m, 1) xso(n+1)xso(4—m, 1) xso(5—n) for a Euclidean brane. The
superalgebra for the (5,5)-brane is psu(2,2|4). Since the dimension of the bosonic subalgebra
is 14 for (1,1)-, (3,1)-, (1,3)- and (3,3)-branes, 16 for (2,0)-, (0,2)-, (4,2)-, (2,4)-branes, and
22 for (5,1)-, (1,5)-, (5,3)- and (3,5)-branes, one may guess the corresponding superalgebras
as those including variants of su(2|2)xsu(2|2), osp(4]4) and osp(6|2) x psu(2|1), respectively.
The existence of these superalgebras is ensured by (R.11) and (m)

!The brane probe analysis [E] is also consistent with this result.



It is straightforward to derive MC equations for the AdS brane NH superalgebra (R.9)
and (R.1§)

dLA = —nzeLAPLC +iL,TAL, (2.20)
dLA = —ngeLAPLE — npcLABLE + L, TAL_ +4iL_T4L, (2.21)
AL = —\2LOLY — 5 LLY — iNL T %0, L, (2.22)
dL¥Y = £ NLYLY — g, LEYLYY — i L T gy L, (2.23)
dLAE — —popLCALEL _i\L, 480y L, (2.24)
AL = —N2LALE — ) LOLY — LT
—iNL T ®igy L — iNL_T ™0y L (2.25)
dL7Y = 4 A2LVLY — g LEVLET g, LET LYY
—iNL T% 0oL —iAL_T%YigoL, (2.26)
AL dn T 1
dL, = —§LAPA1'02L+ - ZLABPABLJF — ZLA—BP,LBLJF, (2.27)
Ao e A um
dL_ = —§LAI“ ool — ELAF eym
1. 45 1., 1.4
—L BripL_ — ZL—BF@L_ - 5L BT 4L+ (2.28)

An alternative way to derive these MC equations is to rescale the Cartan one-forms in the
MC equation (R.4) as

LA oLt LB oL, L. QL. (2.29)

and take the limit  — 0. This provides the leading order terms of the expansion considered
in the non-relativistic limit in section 4.
Finally, let us consider an alternative scaling

1 1 1
AN— =)\, P;— —P; in — i — — _ = . 2.
SN A= =l Jip —wlig, Q+ \/aQJr? Q Vw@Q (2.30)
Since A is absorbed as
Pi— Py, Py—~Pa, Qp— —0 (2.31)
o 1D - .
A A A A A\ A + \/X +

this is equivalent to (R.§) and (R:17) with @ = 1/w. In this paper, we use (.§) and (£.17)
instead of (P.30)), though both limits lead to the same results.

3. NH superalgebra of branes in IIB PP-wave

Type IIB PP-wave superalgebra is obtained as an IW contraction of the super-AdSsxS®
algebra. First of all, let us introduce the following quantities for later convenience,

_ L

_\/E
1 1

Q:Q(+)+Q(7)7 Q(i):Q(i)ng gizirip% ri:_2(r9ir0)

Py (Py £ Ry), P'= (P =Joi,P;=Jo), (3.1)



where i = 1,2,3,4 and i’ = 5,6,7,8. The IW contraction is performed in [f] by scaling
generators in the super-AdSsxS® algebra as

1 1 1 1
P — by, P—4h, P%*—>KP%*, Q(Jr)—’KQH), (3:2)
and then taking the limit A — 0. After the contraction, the super-AdSsxS® algebra is
reduced to the IIB pp-wave superalgebra

A2 . 1 . 1
[P—7P£]:_71327 [P—7PQ]ZEJD§7 [37%]:_577%134-7
[PZ,ij] ni Py — s []3%*7J5,]%] n Pl — .,;P;.k, [JZ],J ] = 535 + 3-terms,
Q). P = 562(”1“;%2, QM. P] = —5Q<+>F+I¢02,
1 1
) pl= — o0, T (£) — 0@
[Q ) Z] 2\/§Q ++3 [Q ) Z]] 2Q

{Q™),QM} = 2icT_Py
{Q(7)7 Q(i)} - 226F+P— — Z%Cfgjlo'gtjﬁ s
{Q®), Q) = 2CT (P, + iACT oo P, (3.3)

where T = (-T9T f, Fi,jlf+g), T = (T f, Fi/g), f=T12%and g = I'°7® | The bosonic
subalgebra, the pp-wave algebra, is the semi-direct product of the Heisenberg algebra
generated by {P;, P%*} with an outer automorphism P_ and the Lorentz algebra generated
by J; .

J

3.1 Lorentzian branes
Here we consider the case that (4, —) are contained in the Neumann directions. Let us
denote the Neumann and the Dirichlet directions, respectively, as

A:("h_?;)a A:i (3.4)

We derive the NH superalgebra of a Lorentzian pp-wave brane as an IW contraction of the
pp-wave superalgebra.
Let us first consider the bosonic subalgebra. We rescale generators in the pp-wave
algebra as
1

1 . L
Py — EPA’ Ja — §J§i, Pi_’ — ﬁpi , (3.5)

and then take the limit 2 — 0. The resulting algebra is the NH algebra of a pp-wave brane

A2 A2 . 1 . 1
[P_7%]:_ﬁ%’ [P—,P;]:—TP_ [P—Jjg]:ﬁ [P—7P;;]:%P;;7
* 1 * *



and

(B J5) = P =By (B Jia) = Py = mig By

i Bl = =gy Vi Bl = m P = m P

[J;;, Jil = n;]:ﬁJﬁ + 3-terms, [Jii’ Jiil = 1&‘]@1 + 3-terms,

o T = mi T =i Vg ol = ma i = i - 3.1

Next we consider the fermionic part. We introduce a matrix M
M = rt—Ar-Ap1 (3.8)
where p is a 2 x 2 matrix. Then QF) are decomposed into the two parts as follows:
QY = +QPM . (3.9)

The chirality of Q® is preserved only when p =odd. In addition, requiring that M2 =1,
we obtain the following condition,

D2 =1, (3.10)
Then we demand that
MTA =T4M, (3.11)
M'Ti0y = TioyM (3.12)
where
M =C'MTC = +(-1)P M, )T =4p . (3.13)
Since
M'TA = (-2 0, T = +p, (3.14)
the first condition is satisfied by
+H-)FT =1, pT=+p. (3.15)

This implies that p” = p for p = 1 mod 4 and p’ = —p for p = 3 mod 4, and that
M' = —M and ¢ = 1. The second condition is rewritten as
1,’i0‘2

(3.16)

01,03

+(-1)" =1, pf= {

where n is the number of the Neumann directions contained in {1,2,3,4} and {5,6,7,8}
so that the directions along which a pp-wave brane worldvolume extends are restricted.
We summarize the results in table fl. This shows possible 1/2 supersymmetric subspaces
which are not necessarily Dirichlet branes of a string. In fact, (4+, —;0dd,odd)-branes with

,10,



1) 1-brane 3-brane 5-brane 7-brane 9-brane
01,03 (+,—1,3)
(+7 s 37 1)
i) (+,—30,2) (+,—34,2)
(+,—;2,0) (+,—;2,4)
| (+-) (+,—30,4) (+,—:4,4)
(+,-32,2)
(+,—;4,0)

Table 2: Lorentzian pp-wave branes.

p =1 mod 4 and (4, —;even,even)-branes with p = 3 mod 4 are 1/2 BPS D-branes of an
open pp-wave superstring [B0, [[], while (+, —;even,even)-branes with p = 1 mod 4 are
not. Our results are consistent with those obtained in the brane probe analysis [R]], the
supergravity analysis [B1] and the CFT analysis in the light-cone gauge [B2-BH.

Scaling Qg;) as

1

(o)
a¥- (3.17)

QY - @Y, QY-

and taking the limit 2 — 0, we obtain the fermionic part of the NH superalgebra

V), ] = —%Qf)F;hﬂag, RO, p] = —Q—%Q(Wahﬂ‘@’

@, P = - 550 finy, @971 = S S,
@B = 5@ (@0 75 = 5@, Qg = 5ol Ty,
Q) 1] = —5QEr (1, Q") =ier PP,

- - A~ a3
Q1),Q)y =2icr, P P, — iﬁcrw@f,m@; - z'%crwwzfmJg,

— — )\ A5
{Q(i ), Q; )} == —2’L'ECFZJZ'O'2€,P$J

R
Q@) = 2iCTi Py P, + iXCT it Py PY,
(0%, @0} = 2icr_PeP, + iXCT oyt PP . (3.18)

In summary we have obtained the NH superalgebra of a pp-wave brane as (B.6), (B.)

and (B.1§). This superalgebra can be derived from the NH superalgebra of an AdS
brane (R.9) and (R.1§) by an IW contraction.

We note that the NH superalgebra of a pp-wave brane contains a super-subalgebra

— 11 —



T (£)
generated by Py, P, P; ’Jﬁ" Jg and QY

A2 L, 1

P Pl=-2_pr [P PY=—— PP = ———n=P,
[ z] V2 i [ Z] 2 [ i Z] \/57@ +
1By gl = B = B, L, Bl = B — g P
[ ,Jkl] U;;J§f+ 3-terms, [‘]11’ Jiil = 1&‘]@1 + 3-terms,

_ 1 . 1 .
Q. P = —ﬁQf)Fgmm, Q. P = —EQf’fm,

— * 1 —+ 1 o [ ] 1 (]

(@, Q") =2icr_p. P,
- - . LA AT D
Q). Q\y =2icr, PP, — zﬁcr Jioal Py Jo= zﬁcrézage_mjﬁ,
Q. Q7Y = 2icr't_Py P+ ixCTV oyl PP (3.19)

This is regarded as a supersymmetrization of the pp-wave algebra which is the isometry on
the brane worldvolume and the Lorentz symmetry in the transverse space. The existence

of this super-subalgebra is ensured by the conditions (B.11]) and (B.13).

3.2 Euclidean branes

We consider the case that (4, —) are contained in the Dirichlet direction. Let us denote
Neumann and Dirichlet directions as A = ¢ and A = (+, —,i), respectively. We derive
the NH superalgebra of a Euclidean pp-wave brane as an IW contraction of the pp-wave
superalgebra.

First we consider the bosonic subalgebra. We rescale generators in the pp-wave algebra

as

1 1 N N
Py — EPA’ J;i — ﬁjii , Pi — QPz (3.20)

and then take the limit 2 — 0. Under the contraction, we obtain the NH algebra of a
Euclidean pp-wave brane

A2 * * 1 * *
L L
B, P] = _ETE;PJr’ [P, Pi] = —E%:PJM (3.21)

and (B.7).

To contract the fermionic part of the pp-wave superalgebra, we introduce a matrix

M]Q

M= mhd, o 22 = (3.22)
and decompose QF) as
QY =+QPM (3.23)

- 12 —



P 1-brane 3-brane 5-brane | 7-brane | 9-brane
o1,03 | (0,2),(2,0) (2,4),(4,2) -
109 (1,3),(3,1) -
1 (1,1) (1,3),(3,1) (5,5)

Table 3: Euclidean pp-wave branes

where p =odd for the chirality of Q). We demand that (B.11) and (B-13) are satisfied.
The first condition (B.11]) is satisfied when

(-1 =1, T =4p (3.24)

so that pT = p for p =1 mod 4 and p’ = —p for p = 3 mod 4. It follows that M’ = —M
and ¢ = y/—1. Next, the second condition (B.19) is found to be satisfied when
1, i02

(3.25)

01,03

i(_l)p+n =1, p= {

This restricts the brane configuration as follows: (odd,odd)-branes with p = 1 and (even,
even)-branes with p = 01,03 for p = 1 mod 4, and (odd,odd)-branes with p = ioy for
p = 3 mod 4. We summarize the result in table [J. This shows possible 1/2 supersymmetric
subspaces. Among them, (even,even)-branes of p = 1 mod 4 and (odd,odd)-branes of
p =3 mod 4 are 1/2 BPS D-branes of an open pp-wave superstring [B0, [Ld].

Scaling Q(i' ) as (B.17) and taking the limit 2 — 0, we obtain the fermionic part of the
NH superalgebra of a Euclidean pp-wave brane

_ 1 . — 1 .
QY P) =~ —sQUNT fios, QY B =~ QL 'TiL fio,

Z V2 ' V2
() p—_ Loy ) pr— L 51
[Q+ ) —] \/EQ_ f10'27 [Q+ ) ’l] 2\/5@— + i
— * Y 1 [ [ ] 1 [ ]
QL) P = 550Uy, 08, 75 = —5QT5, (@Y, 7] = —50lTy,
O PNO M

(@Y, Q) = 2icr_py
— — . . )\ /\;A
{Qg: ), QEF )} = QZCF+P_ — QZECF 1202J§i,

o A T A5
{QS_ ), QS_ )} — _Z%CF JMQJE — ZECF‘ZZJQJQ,
QY. QF} = 2iCTi s Py + iXCTHio P
Q. Q) = 2CTUL P, + iXCT iy P (3.26)

Summarizing we have obtained the NH superalgebra of a Euclidean pp-wave brane as (3.21),
(B.7) and (B.26). Obviously, this superalgebra can be derived from the NH superalgebra of
an AdS brane (2.9) and (R.1§) by an IW contraction.
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We note that the NH superalgebra contains a super-subalgebra generated by P, P%*,

- () .
Ji}’ Jii and Q+

(B Tzl = Py =g P [T BT = = B+ By

j
[J;;, JI;?] = 77;1?];[7 + 3-terms, [Jii’ Jl%_f] = 1z, J; + 3-terms

B 1 , o1
Q). Pl =~ 55U T fioy, (@1 B] = 550 Tty
° 1 o [ ) 1 L]
QY. J5) = —500r5. 1@V, 7yl = —5@VTy,
(= PSS A =i
{QS_ ), QS_ )} = _ZECF JZUQJE — zECI’—lwgJﬁ,
Q9. Q) = 2icrii4 P + z’Acf%mPf (3.27)

which is regarded as a supersymmetrization of the Poincaré algebra generated by {]32, JE}
which is the isometry on the brane worldvolume and the Lorentz symmetry in the transverse
space generated by {PZ*, Jy} The conditions (B.11]) and (B.13) ensure the existence of this

super-subalgebra.

4. Branes in AdS;xS®
A D-brane action [B] (see [B7] for flat D-branes) is composed of the Dirac-Born-Infeld
(DBI) action and the WZ action

S = Sppr + Swz - (4.1)

The DBI action is given, suppressing the dilaton and axion factors here, as

SDpBI = T/ Lper, LpBI = \/sdet(g —|—f) dp+1f (4.2)
)

where F = F — B and F' = dA, and s = —1 for a Lorentzian brane while s = 1 for a
Euclidean brane. g;; is given by g;; = Lf‘LanB with Lf‘ = OZ-ZML‘;‘;I. T is the tension
of the brane. B is the pullback of the NS-NS two-form and A is the gauge field on the
worldvolume. For an F-string, the DBI action is replaced by the Nambu-Goto (NG) action

Sna = T/ Lnag, Lng = \/Sdetgd2§ . (4.3)
%
The WZ action? is characterized by supersymmetric closed (p + 2)-form hp+2
1
Swy =T / Lwz, hpes = dLwy = 3 —h@r2-2m Fn (4.4)
» =0 n.
The closedness of hyo
1 —2n —2n
0=dhyiz =) - (antrr2=20) - po=2mq ) F (4.5)
n=0
implies
dhP+2=2n) _ pr=2n)gF — (4.6)

2See [@] for the Roiban-Siegel formulation [@] of AdS D-branes.
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4.1 CE-cohomology classification

In [R4], it is shown that the Wess-Zumino (WZ) terms of p-branes in flat spacetime can
be classified as non-trivial elements of the Chevalley-Eilenberg (CE) cohomology [R1]. Let
CP(g,R) be the vector space of p-cochains of a Lie algebra g. A p-cochain is a linear
antisymmetric map: g X --- x g — R and a coboundary operator § with 62 = 0 acts as
CP?(g,R) — CP*1(g,R). The CE cohomology group HP(g,R) is defined by Z?/BP where
ZP and BP are the vector spaces of p-cocycles ¢ € ZP satisfying dc = 0 and p-coboundaries
c € BP satisfying ¢ = d¢ with ¢ € CP~1(g,R), respectively. In the present context, this
is viewed as the de Rham cohomology group EP(G,R) for left-invariant (LI) p-forms on
the supergroup G =“super-Poincaré” /“Lorentz”, for which a non-trivial element of the
cohomology is a closed LI p-form modulo exact LI p-forms on . This is generalized to D-
branes in [P3, by introducing an additional two form which corresponds to the modified
field strength of background B field.

Here we examine WZ terms of AdS branes by using the CE cohomology on g of
the supergroup G' =PSU(2,2[4)/(SO(4,1)xSO(5)), i.e. “super-AdS5xS>”/“Lorentz”. We
show that except for the p = 1 case h,;2 can be obtained as a Lorentz invariant non-
trivial element of the CE-cohomology on the free differential algebra which is the MC
equations (R.4) corresponding to the super-AdS;xS® algebra (.1)) equipped with

dF = —iLALT y0L (4.7)

where o is o3 for D-branes while —o; for F1- and NS5-branes.

In order not to introduce an additional dimensionful parameter we assign a dimension
to Cartan one-forms as follows

LA L LAB A F by h®

48
dim 1 1/2 0 —12p+1k—1 (48)

where dim hy 4o = p + 1 because dim hyio = dim LY, = dim L7, = p + 1 for structureless
fundamental branes.

Suppose that h*) is of the form (L4)*(L*)™\!, then n, m and | must satisfy

1
n+§m—l:k—1, n+m =k, (4.9)

because h(*) is a Lorentz invariant k-form of dimension k — 1. We require that €,,....; and
€4} ..ay, are accompanied with A; Aeq,...q5 and Ay ...qz, because €q,...q5 and €y, disappear
in the flat limit A\ — 0. Requiring [ > 0 because otherwise h(¥) diverges in the flat limit.
This implies [ = —3m +1 < 1 and so we consider [ = 0,1. Since ([L.9) is satisfied for
(m,n) = (2,k —2), (0,k) for [ = 0,1, respectively, we find that h(*), k = 1,3,5,..., has
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the following form

1) = o, (4.10)
B = (3)L“L1‘a983)L +PLYIr, Q§3)L, (4.11)
WO = LY L2LS LT g0, 00 L + -+ + ¢ LELELS LTy o1 11 05 L

b0 AEqy as LM -+ L% 4 bsNegy g L -+ L%, (4.12)

WD = L% - LB LTy, gy 'L+ + ¢ L% - L% LTy 08 L, (4.13)

WO = LW LIy g0 L+ + L% LY LTy 0 L, (4.14)

(k)

where c;

and b; are constants determined below. ggk)

o® for k = 3,7 while Q(k)T = —0® for k = 5,9, because CI'A1"4N is symmetric for
N =1,2 mod 4 and anti-symmetric otherwise.
It is straightforward to solve ([.§) to determine coefficients and ng)_ We find

are 2 x 2 matrices satisfying g(k)T =

) =0, (4.15)
h®) = cLAErAQL (4.16)
h®) = o CloApA2LASLD, 4 a ool +— )\(eal as L L — ey L L“s)], (4.17)
K = éL - LASLT 0L, (4.18)
hO = %LAI---LA7EFA1...A7Z'02L . (4.19)

In appendix [B, ¢ = cg?’) is determined by the s-invariance [Bq] of the total action S as
¢ = i and 1 for Lorentzian and Euclidean branes respectively: ¢ = /s. ¢ is o1(o3) for

o = a3(—o1) respectively. The closedness ([.6) is ensured by the Fierz identities

CT'B)(ap crAl“'AﬁBwQ),m +6(Cr 45 ) L s(CT40). 5 =0 . (4.20)

In summary, closed (p + 2)-forms hy o are composed in terms of h*) found above as
in ([4). The actions S for F1- and D3-branes coincide with those obtained in [d(] and [[1],
respectively.

We show that h,4o is a non-trivial element of the cohomology except for hz. If hyyo
is exact, there exists b,11 such as hyyo = db,41. Since

hy = dby, by = —cA\ 'LTgiosL (4.21)

hs is a trivial element of the cohomology [R4, BF]. Next we show that hp4o with p = 3,5,7
)F*3 contained in hp+2. We note

1
!
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that F can be written as®

F =icA\ ' LIcioyL (4.22)

up to an exact form, and that there does not exist a one-form supercurrent f such that
= —1
F = df. So bpy1 must contain a term of the form LZgiooLF 5 Differentiating it, we
= = —3 —1
have LT piosL LALFAULFPT in addition to —2—h® F5 . For hpt2 to be exact, this

(B!

term must be canceled by the differential of a term which is a (p+ 1)-form with p—1 L%’s.

From the MC equation (R.6), we see that there does not exist such a term. Thus hp42 with

p = 3,5,7 obtained above are non-trivial elements of the cohomology.

4.2 (p+ 1)-dimensional form of the WZ term

In this subsection, we give the (p+1)-dimensional form of the WZ term h,,15. We follow [i0,
] in which the (p+ 1)-dimensional form of the WZ term of F1- and D3-branes are given.
The LI Cartan one-forms satisfy the following differential equations

LA = 2i0T4L (4.23)
. PPPS 1.

L™ = df + §LA1“A2‘026 + ZLf‘“—ffrmga, (4.24)

OHLAP = —2iATAPjo, L (4.25)

where a “hat” on a supercurrent implies that 6 is rescaled as 8 — t6. First we note that

O dF = —0ydB = —2id(LALT 400) . (4.26)
This is solved by
B =2 /0 WIAET a00 + B (4.27)
where B is a bosonic 2-form satisfying dB®) = 0. Thus we obtain
F=F—2 /0 UEALT 400 — B | (4.28)
OF = —2i(LALT 400) . (4.29)

For D-brane actions, we choose B?) = 0.
By using (4.23)-(1£.29) and (1.29), one sees that the closed (p + 1)-form hy, o satisfies

athp+2 - dbp+1, (430)
where
F [
prrl:[C/\e]erl, C= @C()’
{=even
2 S A~ A~ S )

cn) — @T\—c)'w LA o, (0)ioaf (4.31)
3This implies that he = h 4+ hO F with A® = e\ and K = —éLZoios L can be a nontrivial element

of the cohomology. It is interesting to examine the O-brane action with the WZ term ho.
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It follows that

1
/ hpio = / Lwz = / [ / dtb, 1 + CPHY (4.32)
B % % 0

where 9B = ¥, and C?*D is a bosonic (p + 1)-form satisfying
hpt2lposome = ACPT (4.33)

Letting p = 1 and 0 = —oq, we reproduce the WZ term of an F-string.

5. Non-relativistic branes in AdS;xS®

In 17, the non-relativistic F-string in AdSsxS® is examined. There the leading contribu-
tions of the NG and the WZ parts in the non-relativistic limit cancel each other, and the
next-to-leading terms contribute to the non-relativistic F-string action. Thus, in order to
extract non-relativistic brane actions, we need to know the next-to-leading order terms in
the limit 2 — 0. Let us consider the scaling

XA ax4, - -6, (5.1)
T=Q%\r, F=QF. (5.2)
(B-1) is consistent with the scaling (B.§) and (R.17). It is straightforward to see that by

substituting (@) into the concrete expression of the supercurrents given in appendix [A.1],
L4 and L are expanded as

LA=Y"0rLg,, 1A= oLy,
n=0

n=0
Ly=) @"Liy,, L= Q"ML g, (5.3)
n=0 n=0
Expand LAB as
L2 =3 rLgP, LAB =S orngf ) LA =S ol (5.4)
n=0 n=0 n=0

and substitute (f.J) and (F.4) into the MC equation (R.4) for the super-AdS;xS° alge-
bra, then the LI Cartan one-forms {Lg, LIA, Lo, L4, L(‘?B, Léj, Lfﬁ} form the MC equa-
tions (R.20)-(2-2§) for the NH superalgebra. *

We consider the non-relativistic limit of the AdS branes obtained in the previous
section. In the following subsections, we will show that when we introduce

M = /=srAo4e g (5.5)

4As will be seen below, the non-relativistic actions are composed of {Lgi7 LSX,LIA7 Lio,Ly2,L_1}. So
these actions are not invariant under the NH superalgebra, but under an expanded superalgebra [@, @]
(see also [Q, @]) which is a generalization of the IW contraction [@]7 generated by generators dual to
{Lih, Lih, L, Lt P, L L [0 < m < 2}
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with p = o1 (iog) for Dp-branes with p = 1(3) mod 4, respectively, and with p = o3 for F1
and NS5, AdS p-brane actions admit expansion

{ DBI DBI

S = Tan / [9—2(.5“;;@ + L8y + L+ ol 0(92)] . (5.6)
>

For the consistent non-relativistic limit  — 0, the divergent term [ (L% + E%’;’Z) should
DBI

cancel out. First, we show that

AL + i, =0. (5.7)

{DBI

This implies that the divergent terms with 6 cancel out, since hgiﬁ’g is composed of only

terms with 6. Next, we consider the bosonic terms of £%%, + ﬁ%\i}’z
DBI

1
(p+1)!

gy e + O (5.8)

where C’ép U s the leading contribution of Cc®+1) in ({-32). This is deleted by choosing

CépH) = _ﬁe%--ﬂpego e 664”. It is easy to see that dCépH) = 0 by using the expres-

sions given in appendix [A.1l Thus the bosonic divergent terms also cancel out. As a result,
we derive the non-relativistic brane action

DBI

SNR = TNR/ Lxr, Lnr =L + ﬁj\?&z (5.9)
5

which is drastically simplified by gauge fixing the k-symmetry by 6. = 0. We examine
each AdS branes in turn below.

5.1 F-string

'~

First, we consider an F-string. The 3-form hg is given in (J.16)) with ¢ = o3. The gluing
matrix M is

M = \/—_SI’AOA1 ®p, p=o01,03,1. (5.10)
Since
MT  0=T ;Mp=+T0M, p= {Z‘Z’l : (5.11)
hs is expanded as
Ths = TNrQ 2h$™ + Tarhi™ + 0(02), (5.12)
hg" = /sLg LyoT 0L+, (5.13)

Wi" = \/s|L{ LT z0L 1 + Li Lol s0L 0

2L Lol 0L 1o + 2L Ly oTaoL 4 |, (5.14)
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for p = 03,1, while hg is of order €2 for p = o;. On the other hand, the NG part is expanded

as
TLxna = TnrQ 2LE + T Ll + 0(0?) (5.15)
£ = /5 detgod’€ = det(Lg) )€ = Seap(Li)(LE) (5.16)
e = %V sdet go i (92)ij d°€ (5.17)
with €4, 4, =1 and
(90)i5 = (L)i(L§)jmaz (5.18)
(92)i5 = 2(L3) (L) ymag + (L) (LY)map - (5.19)

The leading contribution satisfies [[Lj]
ALY = eapiL T L oL = —/5Li' Lol apL 1o (5.20)

where we have used (B.20) and L, = ML,. This cancels out h%" in (F.13) only when
o=p

dLEE 4+ hsv =0 . (5.21)
This implies that #-dependent terms in Ed‘ Ed“’Z cancel each other. The bosonic term

of El‘ffé in (5.14), 5 leis 66460 , is deleted by choosing C( )i n (§.32) as
1 — —
cl? = —Seanc el (5.22)

which satisfies dC’éQ) = 0. Thus, the gluing matrix (f.10) with p = o3 leads to the consistent
non-relativistic limit of the F-string. The non-relativistic F-string action is (5.9) with (5.17)
and

iy Z/dtQ\/—{Lo( T 400- + Lyal 5004)
ALAL (T 00 + LooTa0f_) + LAL, OPAQM . (5.23)

We fix the k-gauge symmetry of the action by 8, = 0 (see appendix [B). Then we have

L) =ef, Li=es+i0 T4Do_, Li=el,
A i 1
Ly=D0_, DO_=do_+ 50 FAng + 4w0 ig0-,
(90)i5 = (e )ileq))mas - (5.24)

In the static gauge, A = £, (eai)i is the vielbein on the AdS brane worldvolume. Thanks
to the k-gauge fixing, we can perform the ¢-integration in (5.29) easily. E NG is reduced to

1
ﬁﬁ% = d%\/%[% eo 62 )inig +

290 (ef) (61 )inap + Z90 76_ 7:D;0_| (5.25)
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where v, = (664)1-1’ i By parameterizing the group manifold as in appendix [A.], it is
rewritten as

n L i A? 5
£l = d*¢y/s det g [590] By 95y"nap + 5 (my* — ny'®) +i0 Dzﬂf} (5.26)

for an (m,n)-brane with (m,n)=(2,0), (0,2). On the other hand, E{ZLZ is reduced to

£ = \/sedDO_T 00— = d2¢\/s det go[— iDiQ_,wiH,} (5.27)
where we have used #- = —M6_ in the second equality. Combining these results, we

obtain the non-relativistic action
1 . 22 P
Sﬁﬁ = TNR /d2§\/ sdet gg bgf)j&yéajyé + E(my2 — ny'z) + ZZG,WZDZH,] . (5.28)

This is a free field action of scalars and fermions propagating on (2,0)- or (0,2)-brane
worldvolume. For the case of a Lorentzian (2,0)-brane, this reproduces the non-relativistic
AdS; brane action obtained in [[L].

5.2 D-string

Secondly, we consider a D-string, for which o = 01 and ¢ = o3. The gluing matrix M is

given in (p.10). Since

1
M'T30=T;4Mp= =4I 30M , p:{al’ , (5.29)
o3
hs is expanded as (5.19) with o = o1 for p = 01,1, while hs is of order Q for p = o3. We
note that for p = o1, F is of order €2

F = QF +0(9%), (5.30)
Fi=F -2 /O it [ﬁg‘(iwr 100 + L AT 300,) + TAL . oT 406, (5.31)

since
M'T 0 = —T 40M . (5.32)

So, the DBI part is expanded as

TLppr = Tnr) 2LES, + TNRUB%I +0(9Y), (5.33)
Lip = /s det go d°¢, (5.34)
Ly = 5 V/sdetgo <90] (92)ij — §gok(f1)kj96l(f1)zi> d*¢ (5.35)

where go, g2 and F; are given in (5.1§), (F.19) and (b.31)), respectively. For p = 1,03, F
is of order Q0. As was done for the F-string case, the h$" in (F.1J) with ¢ = o1 and the
leading contribution of the fermionic part of the DBI action cancel each other. By choosing
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082) = —%e a Beé‘eg;, the bosonic terms of the divergent part cancel out. Thus, the gluing
matrix with p = o1 leads to the consistent non-relativistic limit of the D-string.
The non-relativistic D-string action is given by (p.9) with (5.35) and

el Z/dtQ\/_[Lo( 1T 500 + LyoT 500-)
+IAL T p00s + LT a0 ) + LAL 0T A99+] . (5.36)

Let us gauge fix the k- gauge symmetry by choosing 8, = 0. This makes it easy to
perform the {-integration in ﬁ . The t-integration in 7 in (f.31]) disappears and we have
F1 = Fy. In the similar way in the F-string case, we obtain the non-relativistic D-string

action
1 4 A2
Sﬁ?ﬁ = TNR /d2£\/sdet 90 [—goj(%yéajyé + E(my2 - ny'2)
12i0_~'D;6_ + 4(Fl),j(Fl) } . (5.37)

This is a free field action of scalars, fermions and a gauge field propagating on (2,0)- or

(0,2)-brane worldvolume.

5.3 D3-brane

Thirdly, we consider a D3-brane for which ¢ = ¢; and ¢ = g3. The gluing matrix is
M = /=sTh0 4 @ g, . (5.38)
Since
MTBI___BBZ'JQ =TI'p,. . p,icaM, MIFAQ = —I'z0M, M/FAO' =-T oM, (5.39)

F and h3 are of order 2 as in (f.30) and the WZ part is expanded as

Ths = TarQ 2he" + Tarh™ + 0(QY) (5.40)
hdiv = \?{lgLélLOAQLOA?’LWF AyAyi02L40 s (5.41)
W =0+ B F (5.42)

with

5
h = z{' LLPL L T4 4,000 1 + 3L LR L Lyl 4 4,01 Lo
2L Ly L Lol 4, 4,01 Lya + 6L Lo ?Li® LT 4,4, 0101
A Aoy As 7
+6LG Ly L Lol 4, 4,4,01 L 40
+4Z)\(5(3’1) €a1350,05 L&l L&Q L&?, LQ4 LQ5

50 e 1 /LalL%L%La‘*L%)} (5.43)

a1a2a a4a5

WY = /5| 2LAL 0T 4oL +L1—E+OPAQL+O} , (5.44)
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where §(™™) = 1 for an (m,n)-brane and §0™™ = 0 for others. This implies that the

bosonic 4-form C™ is expanded as

TdC™ = TyrQ2dCSY + TyrdCSY + 004, (5.45)
act =0, (5.46)
dC§4) \/_4 A (5( b €aiazaza,as 681 682 683 6? v 6(1 9 €ay ahayajal 60 60/2 683 6T4 6?5) (5'47)

On the other hand, as F is of order €, the DBI part is expanded as in (f.33). As was done
in the p =1 case, we find

d(\/s det go d*¢) = d(det (LA) )die) = \?{'—LAl ‘L§3E+OFA1___A37:O-2L+O . (5.48)

Thus the fermionic part contained in ﬁ%\i}’z and E%%I cancel each other. In addition, the
bosonic terms are deleted by choosing

4 1 A A
Cé ) 4' EAO A3 60 0, 60 3 (549)

which satisfies dC(§4) = 0. Thus the matrix M leads to the consistent non-relativistic limit
of the AdS D3-brane.
The non-relativistic D3-brane action is given as (p.9) with (p.35) and

£h3, = /O at [054) + c@f-l} +c (5.50)
with
C§4) = 20{%f‘élﬁ?f‘%(Ii,lfglgﬂgiaﬁ, + i+2FA1A2A3i029+)
+%£§1t§2£1ﬁ3@_1r A, 10204 + Lol 4, 4,4 i020)
FL L LT 4, 2, 3,120+ + L LB Lyl 5, 4,0,1020 |
C§2) = 20(ﬁ§(i+OFAQ9, + f/,1FAQH+) + f;léi+ofégﬂ+) . (5.51)

4) .
)IS

The bosonic contribution Cé

/054) = 42'\/5)\/ [5(3’1)V01236a_bdy2y9 — 5(1’3)V012gea,b/dy9/yb/] )
b by o
= 4iy/sA [d*¢+/sdet go [5(3’1)6@8§/y2y9 — 4§13 eg/bzﬁgyg/yy] (5.52)

where 3, x ¥/ is the (m,n)-brane worldvolume, and voly, = &ea,..aeq’ - egt. &(€)
represents the worldvolume direction in AdS5(S® respectively). By fixing the s-symmetry
as 0, = 0, the non-relativistic action is simplified as

2

1, A
SER = Tar / d*¢+/s det go bgoj@yéajyﬁn@ + 3(my2 —ny'®)

_ 1 y
+2i6_~'D,6_ + Z(Fl)l-j(Fl)ﬂ + Tar / i . (5.53)
X
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5.4 D5-brane

Fourthly, we consider a D5-brane for which ¢ = 01 and ¢ = o3. The gluing matrix is

M = V_SFAOMA5®p7 on'laa?nl .
Since

0'1,1

MTél---Bsg = :tfgl___Bng, M/FAQ ==xI'j0M, p= {03

1

! . .
M FBI.,,B3ZO'2 = irglmg520’2M, p=
01,03

1
M'T 0 =+T oM, p= {03’ ,
01

F is of order Q2 only for p = o1. In this case the WZ part is expanded as
Thy = TapQ 2hE + Tyrhi™ + 0(QY),
hdw — 5_\/!_L1041 ... LE)45E+OPA1...A5 oL,

- 1
M = by B F ke R

(5.54)

(5.55)

(5.56)

(5.57)

(5.58)

(5.59)

(5.60)

and the DBI part is expanded as (5.3d). We find that h( ) th) and hég) are given as

hy) = v [LAl- Lg® LT g, 4,001 + 5Ly - L Ly Lol 4, 4, 0L 40

51

o - o
+2L3" - L Lyl 5, g, 0L +10L3" - L*L{® Lyl 5, 1,4, 0L1

A Azt Aar A5 7
+20L01 "'L03L14L15L+0FA1---A3A4A59L+0 ,

h? = Vs [QLAILAQLA3L+OF Ao asi02 Lot + 3L L L Lol 4, 4,4 i02Lso

3!
+842ixeqyaia, Lg - LELE — 6CViNey o LG - Lg4L%5]

= V/sL{' Lol 50L 10 -

)

This implies that the bosonic 6-form C©) is expanded as

TdC(G) = TNRQ_QdCéG) + TNRdCéG) + 0(94)7
dC(SG) — 0,
dCéG) - Z?)ﬁ)‘[ (4,2)6&1“@4@5681 e 6846%5 - 5(2 K 60L1 -a) “ge; eggell

Because

d(+/s det go d°¢) \/_LAl : 'L0A5E+0FA1...A5 oL+o,
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(5.61)

(5.62)
(5.63)

(5.67)



hé® in (F.59) and the fermionic term in the DBI part £&% cancel each other. As before,
one sees that the bosonic terms are also deleted by choosing CO(G) = —ée Ao As 6640 e 6645.
Summarizing we have shown that the matrix M with ¢ = o1 leads to the consistent non-
relativistic limit of the AdS D5-brane.”

The non-relativistic D5-brane action is given as (f.9) with (f.35) and
1
.1 .
£R5, = / atlel? + eV 7+ se 7] + cfY (5.68)
0
with

6 Ledy  jas(7 8
O = e[ B B (AT, 5,00+ Eol 5, 5,004)

VoA pAipds 3 2
ILO 1... L04L1—5(L,1FA1___A4A5Q9+ + L+0FA1---A4A5Q9*)
1.3 N PN S

kot Lo Ly Lol 4, x,004

+%IA:§1£§2£§3£1A4£1A5i+0FA1A2A344A5 99+] )
e = 2c[%f‘§1ﬁ§2ﬁ§3 (i+of,¢ilg2g3i029— + i—lPA1A2A3W29+)
%téltg‘?t%?’iwr A, Aaiagﬁd ,
C(()Z) = 2c [£§i+orgge+} . (5.69)
The bosonic contribution is
/Z ¥ = 4i/s\ /Z [5(4’2)Volg4yF1 - 5(2’4)V012212/F1]

—4i~/5A / d8¢+/s det go [6(4’2)6,~/y(*A1)i/ — 5(2’4)8iy(*A1)i] (5.70)

where y(y') is the transverse direction in AdS5(S®), and i(i’) represents the worldvolume
directions in AdS5(S®). * means the Hodge dual in ¥ or 3. The k-gauge symmetry is
fixed by 64+ = 0, and the non-relativistic action is simplified as

1 i A2
555 = TNR /d6£\/sdet 90 bg(f@iyéajyé + 7(7ny2 — ny’2)
o 1 g
+2i0_~'D;f_ + Z(Fl)ij(ﬂ)ﬂ + Thr / i (5.71)
>

5.5 D7-brane

Finally, let us consider a D7-brane for which ¢ = o1 and ¢ = 03. By using the gluing

matrix

M = /=sT 04 © g, (5.72)

51t is now obvious that for NS5-brane with 0 = 03 and 0 = —o1 the gluing matrix () with p = o3
leads to the consistent non-relativistic NS5-brane.
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one derives

MlFBl---B7io-2 = FBl---B7Z'O-2M’ MlFBl"'B5Q = _FBI'“BSQM’
M'Tg,. pjios =Tg,. piocaM, M'Tz0=—T z0M,
MT j0 =T z0M . (5.73)

These imply that F is of order €2 and the WZ part is expanded as

Thy = TxgQ 2hd" + Tarhd™ + O(QY), (5.74)
hdv = \;'_LAl- -LA7E+0FA1...A71'02L+0, (5.75)
hgn _ h(9) +h(7).7-" + h(5)~7:17 (5.76)

and the DBI is as in (5.33). It is straightforward to see that hgg), hg) and hé5) are given as

h) = \;'_[LAl- LTL ATy, qioeLy + TLY - LYSLa7 Lol g, 102 Lo
2L - LT Lyl 4, g,i00 Lo + 14LG" - LEL7 Lyl 4, 4,4 i02L 1
AL LI LoD g 4.4 4 ioaLio | (5.77)
h{" = \5([ Lot L Lol g, g 001 + 5L - LWL Lo 44, A5QL+O] . (5.78)
K = \?)['[LA% LS Lyl s, 4 ioa Lo
z)\

5 (6(5 3)€a1a2636465La1LaQLaSLa4La5 _ 5(375)6,, [ LGILGQLGSLG4LQ5)] . (579)

a CLQG, a4a
This implies that the bosonic 8-form C®) is expanded as

TdC® = TagQ 2dCSY + TardCyY + 0(QY), (5.80)
dCéB) —0, (5.81)

2 a el
ac® — z\/_ AT eyl €7 — 6OV el el | (). (5.82)

As before, we find

d(+/s det go d®¢) = d(det((L{);)d3¢) = \;'_LAl L{"LyoT 4, 4 i0a Lo . (5.83)

This implies that hd“’ and the fermionic terms in E]‘%]%I cancel each other. The bosonic
terms are also deleted by choosing C(S) 81! € A A7eg1 . 6617. Thus we find that the
matrix M leads to the consistent non-relativistic limit of the AdS D7-brane.

The non-relativistic D7-brane action is given as (f.9) with (f.35) and

1
~ 1 ~
£o7, — / dt [058) +COF 4+ 565“?%} +cP (5.84)
0
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with
1 ~ A ~ A 2 2
c® = 20[7—LA1 LT (LT, 4 io90 + Lol 4. 40020,
L LASEAT (LT 4 g4 ioofy + Lol 4 4 4 icaf
+6' 0Ly (L Ay Agat020+ + Lol 4,454,102 -)

A ¢AgfArE
L LO L2 L+0PA1“,A7’LO'29+

6'
+5 Lidi. 1;5‘513146IL%?E+OPA1___A5A6A71@9+} :
¢ = 20[51LA1 L (LyoT 4, 4,00— + LT 4, 4,005)
+4,LA1 "i‘(?4i‘1é5i+orﬁl...ﬁ4é5@9+] )
el = 20[3'LA1- LDy oy, . A3i029+] . (5.85)

The bosonic contribution is

/ ¥ = —2i/sA / [5<5v3>v0125A1F1 - 5(3’5)v012/5A1F1]
>

—21\/_)\/(185\/8(16'690[ (5,3) A1 )Z —(5(3’5)(A1)i(*F1)i] (586)

where i(i’) represents worldvolume directions in AdS5(S®), and * means the Hodge dual in
Y3 or ¥%. The k-gauge symmetry is fixed by 64 = 0, and then the non-relativistic action
is simplified as
D7 8¢ [odeto L iig.,A N2
S\r = INr [d°§y/sdet go {590 0iy=0;ya + 7(my —ny'")
_ 1 3
+2i0_~'D;0_ + Z(Fl)l-j(Fl)”} + Tar / c® . (5.87)
b

In summary, we have derived non-relativistic AdS Dp-brane actions in AdSsxS®. In

the flat limit A — 0, these actions for Lorentzian branes are reduced to the non-relativistic
Dp-brane actions in flat spacetime derived in [[[J].

6. NH superalgebra of branes in AdS4/7><S7/4

The super-isometry algebra of the AdS,4+2xS%77 (¢ = 2,5) solution of the eleven-dimensio-
nal supergravity is generated by translation P4, Lorentz rotation Jap = (Jup, Jopr) and
32-component Majorana supercharge @ as

[Py, Py = 4€2X2 o, [Pu, Py] = —€2X2J gy ,
[Jab7 Pc] = 77bcPa - nacpb 5 [Ja’ba Pc’] = 77b/c/13a’ - 77a’c’Pb’ P
[Jab, ch] = MbeJad + 3-terms, [Ja’b’a Jc’d’] =NyeJarar + 3-terms,
A~ 1
[PAaQ] = _iQFA, [‘]ABaQ] = §QFAB?
{Q,Q} = —2CTAP4 + XCT4P Iy (6.1)
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where T4 = (27T, 7T and T4B = (27T, —IT9Y), and €2 = 1 for ¢ = 2 and €2 = —1
for ¢ = 5. For ¢ = 2, this superalgebra is the super-AdS;xS” algebra, osp(8|4), with the
vector index of AdSy, a = 0,1,2,3 and that of S7, o’ = 4,5,...,9,5. On the other hand,
for ¢ = 5, this superalgebra is the super-AdS;xS* algebra, osp(8*|4) with the vector index
of S%, a =1,1,2,3 and that of AdS7, ' =4,5,...,9,0. We use the almost positive metric
N We define A and 7 as

1 2 9 1.9 1/2,q=2
)\ R, R RS kRAdS; {2’ q:5
e ¢g=2
ToTH%B pt_ { o Z . (6.2)

where Rg and Raqgg are the radii of S?~¢ and that of AdS, 2, respectively. The gamma
matrix I'4 € Spin(1,10) and the charge conjugation matrix C satisfy 2.

Letting g be a group element of the supergroup of the superalgebra (f.1]), the LI Cartan
one-form is defined as

1
Q=g 'dg =L"Pa+ L a5 + QoL . (6.3)

The (anti-)commutation relations [T'4, T3} = fABéTé, T = {Pa,Jap,Qr}, are equivalent
to the Maurer-Cartan (MC) equation

dY=-QANQ. (6.4)
The MC equations corresponding to the superalgebra (p.]) are derived as
dL? = —npcLAPLY — LTAL
dL® = —42N2LOLY — 5 qLLY + 2A\LITL
dLYY = +ENLYLY — 5 LEYLYY — ALITYY' L,

A
2

o 1
dL® LAT AL — ZLABF asL . (6.5)

We introduce a matrix M

(23]

M=ot 21l =1 (6.6)
where {4y, ..., A,} are directions along which the brane worldvolume extends, so A =
(A, A). Let an AdS brane extend along m directions in AdS; or S* and n directions in
S” or AdSy, then the AdS brane worldvolume admits AdS,,(H™)xS"™ or S™ x AdS,,(H")
isometry algebra for a Lorentzian (a Euclidean) brane, respectively. After contraction, the
isometry of the transverse space is reduced to the Poincaré algebra iso(4 — m)xiso(7 —
n) (iso(3 — m, 1)xiso(7 — n)) or iso(4 — m)xiso(7 — n) (iso(4 — m)xiso(6 — n,1)) for a
Lorentzian (a Euclidean) brane. We require that the contracted superalgebra contains a
super subalgebra, the supersymmetrization of the direct product of the isometry algebra
on the AdS brane worldvolume and the Lorentz symmetry in the transverse space, so(m —
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1-brane 2-brane 5-brane 6-brane 9-brane | 10-brane
(1,1) 1(0,3), (2,1) | (1,5), (3,3) | (0,7), (2,5), (4,3) | (3,7) (4,7)

Table 4: Branes in AdS,;xS” and S* x AdS7

1,2)xso(n + 1)xso(4 —m)xso(7 —n) ( so(m,1)xso(n + 1)xso(3 —m,1)xso(7 —n) ) for a
Lorentzian (a Euclidean) brane in AdS;xS”, and so(m-+1)xso(n—1,2)xso(4—m)xso(7—n)
( so(m + 1)xso(n,1)xso(4 — m)xso(6 — n,1) ) for a Lorentzian (a Euclidean) brane in
S* x AdS7, respectively. This is satisfied if

MTA=T4M, MTAB =T48)1, (6.7)
where
M =0 'MTC = (—1)p PR (6.8)
The first condition is satisfied if p = 1,2 mod 4. Since
M'TAB — (_1)p+1+d+[%}fABM (6.9)

where d is the number of the Dirichlet directions contained in {f, 1,2, 3}, these are satisfied
by (odd,odd)-branes (p = 1 mod 4) and (even,odd)-branes (p = 2 mod 4). We depict
branes in table . The 10-brane is just AdS4/7><S7/4 itself as M = 1. This table shows
possible 1/2 supersymmetric subspaces which contain 1/2 BPS branes in AdS4/7><S7/ 4,
The p-branes with p = 1 mod 4 are 1/2 BPS Dirichlet branes of an open supermembrane
in AdS, /7><S7/ 4 |26, 7). The brane probe analysis for M-branes [[iJ] is also consistent with
this result.

We derive the NH superalgebra for these branes as IW contractions of the M pp-wave
superalgebra.First, we rescale generators as

PA—>—PA, JAEH—JAB, Q. — =Q_ (6.10)
where we have decomposed @) as
1
Q=Q++Q-, QsPr=0Qx, Pr=501+M). (6.11)

Substituting these into (B.]) and then taking the limit  — 0, we derive the NH superal-
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gebra for an AdS brane

[Pas By = 42X T, [Par, Byl = =22y

[Pa, Py] = 46* X Jay,  [Par, Pyl = =X Ty

[Jas, Pl =ngePi—nicPs, [Jas, Pel=-nicPs.

[Jap, Pc] =npcPa —nacPs ,

(i, Jepl = ngadip + 3-terms,  [Jap, Jop] = npcJap + 3-terms,
[Ja5,Jep) =ngedap —naclep.  [JaB,Jepl =nBpJea —napJep

A~ A~
[PAaQi] = _§Qir,§, [PA’ QJr] = _§Q*FA’

1 1 1
[Jap, Q=] = 5Q+Lap, [Jap, Qs] = 5Q+Lap, [Jap @+l = 5Q-Tip,
{Q4,Q4} = —2CTAP P; + ACTAPPJ 55 + \CTABP, Jyp
{Q+,Q_} = —2CTAP_Py + 2XCTAEP_J 5, . (6.12)

We note that this superalgebra contains two bosonic algebras and a superalgebra as
subalgebras. One is the isometry of the (m, n)-brane worldvolume, generated by { Pz, Ji5},
the AdS,,(H™)xS" algebra for a Lorentzian (a Euclidean) brane in AdS4xS” and the
S™ x AdS,,(H,) algebra for a Lorentzian (a Euclidean) brane in S* x AdS;. Another is
the isometry in the transverse space generated by {P4, Jap}, the Poincaré algebra iso(4 —
m)xiso(7—n) (iso(3 —m,1)xiso(7—n) ) in AdSy;xS” and iso(4 — m)xiso(7 —n) (iso(4 —
m)xiso(6 —n,1) ) in S* x AdS; for a Lorentzian (a Euclidean) brane. The other is the
superalgebra generated by {Pj1, Ji5, Jap, Q+}

[Pa, By = 46X Ty, [P, Pyl = —€XNJyy s [Jag, Pl =npePi —nacPs,

[JAB, JC’D] = nBC’JAD + 3-terms, [JAig, J@] = 77370‘]@ + 3-terms,
A ~ 1 1
[P1, Q4] = —5Q+FA, (Jap,Q+] = §Q+FAB, [JaB, Q] = §Q+FA_B,

{Q4,Q4} = —2CTAP, Ps + ACTAPP L J 55 + \CTABP, Jyp (6.13)

which is the supersymmetrization of the algebra, so(m—1, 2) xso(n+1)xso(4—m)xso(7—n)
( so(m,1)xso(n + 1)xso(3 — m,1)xso(7 — n) ) for a Lorentzian (a Euclidean) brane in
AdS;xS7, and so(m + 1) xso(n — 1,2)xso(4 — m)xso(7 —n) ( so(m + 1)xso(n, 1)xso(4 —
m)xso(6 — n,1) ) for a Lorentzian (a Euclidean) brane in S* x AdS7. For a (4,7)-brane
the superalgebra is obviously osp(8[4) or osp(8*|4). Since the dimension of the bosonic
subalgebra is 18 for (0,3)- and (3,3)-branes, 20 for (1,1)-, (2,1)-, (1,5)- and (2,5)-branes,
22 for a (4,3)-brane, and 34 for (0,7)- and (3,7)-branes, one may guess the superalgebra
as those including variants of osp(4|2)xosp(4/2), osp(6]2)xs0(2]|2), sp(4|2)xosp(4|2) and
0sp(8]2) xsu(2), respectively. The existence of this superalgebra is ensured by (b.7).
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The NH superalgebra (6.12) is equivalent to the MC equation

dLA = —npsLAPLC — L,TAL,
dLA = —ngaLAPLY — o LABLY — L, TAL — L TAL,,
dL® = —4NLOLY — nLLY 4 2AL, IT9 L |
dLYY = 4 N2LYLY — g LEY LYY AL ITVV L,
dLAE = —popLCPLED ¢ AL, TABL,
AL = —42NLILY — 1 fLOLY — g LTt
+2NLLITRL + 2AL_IT%L, |
dL7Y = 4 ENLYLY — g LYV LYY o, LV

~ALLITYY L — AL_IT"YL, |
A aa 145 1

dLy = §LAFAL+ - ZLABFABLJr - ZLA_BFA_BLJM
A i s ALas

dl, — §LAFAL,§LAFAL+

1_ 75 1 1_3
—LABT ;5L — —LABD gL — SLABr 35L, .
4 4 = 2 2
The MC equation above can be obtained by rescaling Cartan one-forms in (@) as
LA 014, 148 L L8 L. QL

and taking the limit  — 0.

7. NH superalgebra of branes in M pp-wave

We define
1 JZ leh AdS4XS7
Py =—(P, L+ F, Pr=|P'= P = f
+ \/5( ﬂ 0)’ i < i {Jm T {Ji/0> or {AdS7XS4
1 1
(#) — 0@y /N—— A 'y=—T, &0
Q Qs , Ly slels, Ty \/5( s £10),
I AdS,xS7
T=r"% 1t= f !
’ 1t %" ) AdS, xS

where where i = 1,2,3 and 7/ = 4,5,6,7,8,9.

Scaling generators in the super-AdS, /7><S7/ 4 algebra as

1

P+—>A2

P meln mole g loe

1 Az’

,31,

(6.20)
(6.21)

(6.22)

(6.23)

(7.3)



and taking the limit A — 0 limit [ff], we obtain the M pp-wave superalgebra

Por= X p =X P pop--Lp
*,Z_\/E@a 752_\/51” 7’1'_\/57;’
* 1 * *k *
Py Pi) = Z5m P [P Tyl =mbr = m By 1 Jig) = m B = mig Py
(T35 il = NS5 + 3-terms,
3
P O] = ®f P, (
[P, Q"] 2\fo[Q] 2\fo,
[B,Q(‘)]=—7Q(+)fnf+, [P, Q7] = - f@ fTaly,
1
(£) (B PO = —oHnr
[Zj’Q ] Q [Z’Q ] 2\/5@ 7 +
{QM, @M} = —2cr_Py
A AN
=,y = —2cr, P — Z_CTY J,
{Q ?Q } + \/5 1]
{QW,QF)} = —2CT UL P, — ANCfT U+ P! F 2XCfT7 (=P}, (7.4)

where T = (=20, fT¥. T, fl“i/j/) and f = I''?3. The bosonic subalgebra is the semi-direct
product of the Heisenberg algebra generated by {P, P%*} with an outer automorphism P_
and the Lorentz symmetry generated by Jgi.

7.1 Lorentzian branes

We consider a Lorentzian pp-wave brane for which (4, —) directions are contained in the
Neumann directions. We denote Neumann and Dirichlet directions, A = (4, —,4) and
A =1, respectively.

We derive NH superalgebras of Lorentzian pp-wave branes as IW contractions of the

M pp-wave superalgebra.

First we consider the bosonic subalgebra. The contraction is taken by rescaling gener-
ators as

1 * *
Pag— 5Pa, JAB_’ﬁJAB, %—»—P:, (7.5)

and taking the limit 2 — 0. One obtains the NH algebra of an M pp-wave brane

4\ 4\2 22 2?2
[P, B]=—=P", [P Pl=—F, [P Fl=—7F, [P, Pl=—F;,
V2 TR V2 SRR
1 1 1
Pf,P:k :—_R, Pf,P* _——P, R,P = — ’?".P y
[ z] 91 [ l] \/5 3 [ 7 ] \/5772] +
[P ) = mBy s [P ] = ms P (7.6)
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1-brane 2-brane 5-brane 6-brane 9-brane 10-brane
(+,_) ("—a_aoa 1) (+a_a054) (+’_70’ 5) (+’_72’6) -
(+7_7272) (+7_7273)
Table 5: Lorentzian M pp-wave branes
and
[P, Jp] = 7T;;P,; sy [P Ty) = s By — g P
[J - kl] U J + 3-terms, Jg_, Jiil = il + 3-terms,
[J ] }'R‘JEZ - TT;,;,J;Z’ [J%:, Jfgz] = UlJi;; ~ ik (7.7)
Next we consider the fermionic part. We decompose Q(®) as
QY =+QPM  with M =rtArde 2 =21 (78)
which satisfies
M’ =ctMTC = (—1)prHE (7.9)
We demand that
MTA =140\, 7.10)
M'T4 =T | (7.11)
Since
M'TA = (1) pApy (7.12)

the first condition (7.10) is satisfied when p = 1,2 mod 4. The second condition ([7.1)
restricts the directions along which a pp-wave brane extends. Since

MTU = (—1) 1+ T gy (7.13)
2,3}, we find that

n =even for p = 1,2 mod 4. In table | we summarize the result. This shows possible 1 /2

where n is the number of the Neumann directions contained in {1,
supersymmetric subspaces in M pp-wave. Among them, the p-branes with p = 1 mod 4
are Dirichlet branes of an open supermembrane in M pp-wave [[6], 7).

Scaling Qg;) as

(7.14)
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and taking the limit Q — 0, we obtain the fermionic part of the NH superalgebra
3\ 5

[Pf,Q(f)]:—ﬁ Ofop,Q = - fQi 't

_ A _ A
P,QL ) = —TQi“frgm, P,Q = —ﬁQf)fP;h,
[EHQ(i_)] - \/—Q fP;/F+, [P1/7Qgr_)] - 2?}-@ +)fr P

. . o) 1
72,8 = 2Q0Ts, 175,Q0) = 50Ty, 1,8 = 562&*’% :

. A(— 1

[Pg,Qi ]:ﬁQi -y, [P i Q+ ] \/—Q( )F2F+,

.01} = —2cr_Py Py

_ _ )\ Ag? )\ A%é
Q),Q )y = —2cr P P+ Ecr TPy + Ech_7>+Jﬁ,

Q.Q0)) = vaxcriy,
Q) = —QCP§€:F77+R¢ —ANCST 5Py Py F 20CfT7 [+ PL P
{Q17, Q) = —2CT0x PP, — 4ACST U P_P} F 20T 1+ P_P;} .

(7.15)

Summarizing we have derived the NH superalgebra of an M pp-wave brane as ([.4), (F.7)

and ([-17).

We note that the NH superalgebra of a Lorentzian M pp-wave brane contains a super-

+
subalgebra generated by P, P%, %*, JE’ Jﬂ and QSL )

4)\2 2 1
P pl=p pp)=Xp pp=-Lp
V2! V2! Z 2"
B, P2l = E%PJH B Tl = ms By = B (B ] = s Py — g P
[J5= ’Jkl] 77;?J?f+3—terms [T ’Jkl] Jlel—l—?)—terms,
p_, = ®f, [P,V = :
1P, QL] =—EQ+ )Ty [Pz/,@&‘ ] = \fQ )Tyt

A L e A N I ;
(7, Q\"y = —2cr_p.py
) AN A otip o A ofiip T
{Q+ ,Q+ } - 2CF+’P+P7 + ﬁCI‘ PJFJEj + \/icr *PqLle-,
(QF,Q[7) = 20T P, P, — ANCST U= Py PF F 20C STV (<P, P} .

(7.16)

This is the supersymmetrization of the pp-wave algebra which is the isometry on the brane

worldvolume and the Lorentz symmetry in the transverse space. The conditions
and ([.11]) ensure the existence of this superalgebra.

,34,

[10)



1-brane 2-brane 5-brane 6-brane 9-brane | 10-brane
(1?1) (1’2)5 (350) (155)7 (353) (1,6)5 (374) - -

Table 6: Euclidean M pp-wave branes

7.2 Euclidean branes

We consider a Euclidean pp-wave brane for which (+, —) directions are contained in the
Dirichlet directions. We denote Neumann and Dirichlet directions as A = i and A =
(4, —,1) , respectively.

We derive NH superalgebras of Euclidean pp-wave branes as IW contractions of the M
pp-wave superalgebra. First we consider the bosonic subalgebra. The contraction is taken

by rescaling generators as

1 1 1
—Py, Jip— =Jig, P — =P, (7.17)

P
E) BT YABy Tl

and taking the limit {2 — 0. One obtains the NH algebra of a Euclidean M pp-wave brane

402 A2 . 1
[P_’E]:%PE s [P_,P%/]:EPE,, [P_7Pi]:_ﬁpi’ [%7J‘;k‘]:77;;PE7

and (F.7).

Next we consider the fermionic part of the NH superalgebra. We decompose Q®) as
ptl

©—1QPM, M=mitb N2 =)= (7.19)

We demand that the conditions (f.10) and (7.11) are satisfied. The first condition (7.10)
implies that p = 1,2 mod 4 as

M'TA = (—1)"5%Irdn (7.20)
On the other hand, since
MTH = (—1ynP5 T (7.21)

where n is the number of the Neumann directions contained in {1, 2, 3}, the second condition
is satisfied when n =odd for p = 1,2 mod 4. We summarize the result in table fl. Among
these 1/2 supersymmetric subspaces, the p-branes with p = 1 mod 4 are Dirichlet branes
of an open supermembrane in M pp-wave [[6, [7].
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Scaling Q(i' ) as (B-17) and taking the limit 2 — 0, we obtain the fermionic part of the
NH superalgebra of a Euclidean M pp-wave brane

P =~ \fQ”f [P Q) =~ WQ 7,

P00 =~ mire . (R.Q1) = 50T

P @) = 550U T [Pg,@@]:—%cz(“frgm,
J5@4 = 5Q0T5 Q1 = 5@y, 1,@8) = 300,
Pr.Q) = 5= (7.0 = =TTy

{Q(i+)7 Q(I—H} = _2CF—P:FP+ )

_ _ )\ A?‘ )\ /\;’I

Q). Q) = —2cr PP - \/§>\Cf§iJ§j :
{Q+ ) + } 2CI‘§€173+R¢ - 4)‘CfF1€$P+PZ + 2)\CfI‘i/€¢73+P; ’
{Q1,QF} = —2CTU P P — X TP P OC/T P P . (122)

Summarizing we have derived the NH superalgebra of a Fuclidean M pp-wave brane
as (.19), ([C.3) and (F-29).

We note that there exists a super-subalgebra of the NH superalgebra generated by P
T (£)
P%_,*7 J%j,, Jii and QY

[PtaJ]k] TE;PE_W;EP‘;a [Pi*ﬂ]ié] :W“P}—U“Pja
[ ,Jkl] U;;J§f+ 3-terms, [Ji-'i’ Jiil = J + 3-terms,
_ N _ A
1P,Q ] = —762& fTiry . [P, QY )] -7 Moy
L (o) x (= 1 )

— — FA.A. s P 5 — F F 9
[ Q—f—] Q+ [ Q—f—] Q+ 7] [ i Q+ ] 2\/5 +

() _ UJ— A efiiy.
{Q+ 7Q+ } \/5 \/5 Ll’
(QF), QP = —2CTi P, P. — ANCSTI=P, P} T 2ACSTY (P, P} . (7.23)

This is the supersymmetrization of the Poincaré algebra generated by {PZ, JE} which is
the isometry on the brane worldvolume and the Lorentz symmetry in the transverse space
generated by {Pi‘*’ le }. The conditions (f.10) and (.11]) ensure the existence of this super-
subalgebra.
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8. Branes in AdS,;;xS™*

The action for an M2-brane [i§] is composed of the NG action and the WZ action

S:T/[ﬁNg+£wz], LNa :dp+1£\/sdetgij, (8.1)
%
where s = —1 for a Lorentzian brane and s = 1 for a Euclidean brane. g;; is given by

gij = Lf‘Lf;nAB with Lf = OZ-ZMLAAZ. T is the tension of the brane. For an Mb5-brane
case, the self-duality of the two-form gauge field B on the brane is imposed on the field
equations, or the NG action is replaced by the PST action [i]

Vsdetg, i
Lrst = \/sdet(gij — ia?H;,) + QQ¥H*UHU, (8.2)
O;a

Hij = Hijpv"™, H™ =H", v =

VvV gjkaja(?ka ’

1 EijklmnHlmn , H = dB

3ly/sdet g

where C3 is a pullback of the three-form gauge field, and o? = iy/s. Here the PST scalar
field a is contained in the M5-brane case as a modification of the usual DBI action. The WZ

term is known to be characterized by manifestly supersymmetric (p+2)-form h,12 = dlwz,

H=H+Cs, HVF=

which is composed of the pullback of the supercurrents, L4 and L, on the supergroup
manifold and the modified field strength H. The (p 4 2)-form h, 2 is closed but not exact
on the superspace, because Ly is not superinvariant but quasi-superinvariant. Expanding
hp+o with respect to H

hp+2(LA7 Laa H) - h(p+2) (LA7 La) - %Hh(p_l) (LA7 La) ) (83)
where c is a constant determined below, the closedness condition dh, 42 = 0 is expressed as

dhP=1) =0, (8.4)
dhP+?) %dHh(’"l) = 0.

8.1 CE-cohomology classification

We show that Mp-brane actions in AdS,;2xS%77 (¢ = 2,5) can be classified as non-trivial
elements of the CE-cohomology on the differential algebra, MC equations ([.§) for the
super-AdS,2x 5?74 algebra.

In order to avoid an additional dimensionful parameter, we assign dimensions as

LA LY N H

8.6
dim 1 1/2 -1 3 (8.6)

For structureless branes, the dimension of Swyz must be equal to the dimension of Sng,
from which we find dimhpy2 = p + 1 because dim hy,, o = dim Lwz = dim Lng = p + 1,
and thus dimh® = k — 1. h® is composed of LA, L* and ), and thus we can write
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hE) as A(LA)™(L®)". The integers [,m and n are restricted by the properties of h(¥),
dim h®) = k — 1 and degh® = E, as

1
—l+m+§n:k—1, m+n =k. (8.7)

For consistent flat limit, we demand [ > 0 because A is related to the inverse of the radii
of AdS,4+2 and S9=4. In addition, we require that 4, ...q, and €q)--af, ATC accompanied with
A; Aégy.qq and )‘Ea’l---a/77 because €g,...q, and €at ) disappear in the flat limit. Noting
that (B7) implies | = 1 — %n < 1, we consider the cases with [ = 0 and 1. It is easy
to see that (m,n) = (k —2,2) for [ = 0 while (m,n) = (k,0) for I = 1. In the former
case, terms of the form LA ... LA’C—QEI’AI...AIC%L are candidates for h(*). These terms are
non-trivial only for k£ = 3,4 mod 4, because CT'4,...4, , is symmetric if £ — 2 = 1,2 mod
4. In the latter case, Aeg,...q, L -+ - L% and )\Eall...a;Lall .- L% are candidates for A and

h(D, respectively. We summarize the non-trivial candidates for h(¥)

p®) . LALT,L (8.8)
K . LALBLT AL, Aeqy..q,L --- L% (8.9)
hD o LAY LAIT A L, Aegroq L+ L% (8.10)
h® . LAY LASLD 4, L (8.11)

where LALT 4 L stands for two candidates L4LT,L and L* LT,/ L, and so on. For example,
h® is of the form

Y = ¢ LLPLT g L 4 ¢oLOLY LTy L + csLY LY LT iy L + c4Meéq,..q, L™ - - - L% (8.12)

Next we are going to find h(*) satisfying (B4) and (B.5). The first step for this is to find a
closed form dh®) = 0 in (B4). h*® can be a closed form only when & = 4. This is due to
the Fierz identity

(CT4B)(ap(CTP).5 =0 . (8.13)

The coefficients are fixed by the closedness condition dh(? = 0 as

1 - 6
h® = chALBLFABL — eaea LM L (8.14)
where €123 = —€y103 = +1. As seen in appendix B, the overall coefficient c is fixed by

the requirement of the s-invariance [, of the total action S as ¢ = —1 for Lorentzian
brane and ¢ = i for Euclidean brane: ¢ = i,/s. Using h(*) above, the closed four-form hy is
constructed as

hy = hY. (8.15)

Because h4 is not exact on the superspace as will be shown below, we find that the M2-brane
action in AdS, /7><S7/ 4 is a non-trivial element of CE cohomology of the differential alge-
bra (B.5), MC equations for super-AdS, /7><S7/ 4 algebra. The obtained action is consistent
with one given in [5(].
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Next we introduce dH to the differential algebra (f.5§). Since H = dB + C3 and
hy = ¢'dC3 with a constant ¢/, dH is given by

ddH = hy = hW (8.16)

where h) is given in (§14). If we can construct h(7) satisfying (85), then h; turns out
to be a closed seven-form. We find that using (B.14) and (B.16) the condition (B.§) fixes

coefficients of a linear combination of candidates as

1 _ 6 / /
K = 2 [ELAl LMLy g L= Sy g L L%} (8.17)
where €4, gy = —€4..90 = +1 and ¢ = —c. To see this we have used the Fierz identity,
(CPAI...A5)(aﬁ(CFA5)'y5) - 3(CF[A1A2)(aﬁ(CFA3A4})75) =0. (8'18)

The closed seven-form is constructed using (§.14) and (B.17) as
hy = B — gh@m. (8.19)

Because hr is not exact on the superspace as will be shown below, we find that M5-brane
action in AdS, /7><S7/ 4 is characterized as a non-trivial element of CE cohomology on the
differential algebra (6.§) and (B:1f). The constant ¢? is determined by the requirement
that the total action is k-invariant [[I9, as ¢ = —1 and i for Lorentzian and Euclidean
branes respectively, i.e. ¢2 = a? = iy/s. See appendix B. The obtained action is consistent
with one given in [5].

We show that the four- and seven-forms obtained above are not exact. Suppose that
hy is exact, then there must exist b®) such that hY = db®. bB) can be written as
M(LA)Y™(L*)™ where integers [, m and n are restricted by the properties of b3), dim b®) = 3
and deg b(® = 3. This implies that [ < 0. We find that there is no candidate for [ = 0. For
| = —1, we find two candidates, A\"'L¢LT,L and A~'L% LT,/ L, but any linear combination
of them does not satisfy h(¥) = db®). Tt is obvious that terms with { < —2 do not satisfy
R4 = db®). Thus, hy is not exact. Next, suppose that k7 is exact, then there exists bg such
that h; = dbg. This implies, expanding bg(L#, L%, H) as b©) (LA, L*)+1Hb®) (LA, L*), that

D = db® — Sarp®, p® = —gp®. (8.20)
2 )
Because we have shown that (% is not exact, there dose not exist b®) satisfying (8:20).
Thus, we have shown that h7 is not exact.
Summarizing we find that actions of M2- and M5-branes in AdSy /7><S7/ 4 are charac-

terized as non-trivial elements of the CE cohomology.

8.2 (p+ 1)-dimensional form of the WZ term

We derive (p + 1)-dimensional form of the WZ-term following [51]].
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The supervielbein and super spin connection are given in appendix [A.3. These satisfy
the following differential equations

LA = —200°L (8.21)

LAP = 2ATAPL | (8.22)
R .~ 1.

oL = do — %LAI“AG + ZLABP,LU;;@, (8.23)

where the symbols with “hat” imply that the fermionic variable 6 is rescaled as 8 — t6.

By using these equations, one finds that

~

Oihy = dby, by = —cLALBLT 450 . (8.24)

This implies that

1
hy = dCs, Cs= / dtbs + C®) (8.25)
0

where C'®) is a bosonic 3-form satisfying dC®) = h4|bosonic- It follows from

1
—cH =dB + / dtbs +C®) (8.26)
0
that
—cOH = b3 . (8.27)
In the similar way, one derives
~ N 2 A A 2
Oihr = d(bg — %bgH), bs = CQELAI LASIT .0 (8.28)
so that
1 e .
he = dCs, Co = /O dt (b — SbsF) + OO (8.29)

where C' is a bosonic 6-form satisfying dC'(®) = Iz |bosonic-
Summarizing the (p + 1)-dimensional form of the WZ term is given as

1 .
L2 — /s / dtLALPLL 4560 + C®) (8.30)
0

M5
ﬁWZ

1 . s .

z\/g/ dt (%ﬁAl---ﬁAiFAl...Aﬁ— %LALBLFABHH> +C© . (8.31)
0 .

9. Non-relativistic branes in AdS;/;xS7/*

We consider the non-relativistic limit of the branes in AdS, /7><S7/ 4 obtained in the previous
section.
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We scale coordinates and the tension as

X4 0x4, 0. -6,
T:TNR972, H=0QH; .

(P7) is consistent with (B.J). As can be seen from the concrete expression of the supercur-
rents given in appendix [A.g, the supercurrents are expanded as (5.3). Expanding LAB as
in (b.4) and substltutlng (@) and (E) into the MC equation (b.5), one finds that Cartan
one forms {LZ, La ,LAB LoZ 1AB L, |m = 0,1} form the MC equation (f.14)-(6.22).

9.1 M2-brane

First we consider an M2-brane. The NG part Lng is expanded as in (B.15) with (5.16)
and (b.17). By using (6.14) and Ly = ML, with (B.6]), one derives

AL = d(det(Li);d3¢) = \/_LAILA2L+0FA1A2L+O (9.3)
Since
M'TAB =TAB)f | (9.4)
the four-form h4 is expanded as
Thy = TnpQ 2R + Tarhi™ + O(QY) (9.5)
with
h{" = %LS‘L(?LFOFABMO’ (9.6)
hy" = # [Lé LEL \TapL 1 + 2LGLE Lol ap Lo + 2LGLE Lol 45 Lo
HALYLE Lol 1 L1 + LT Lol ap Lo
—6)\5(2’1)6(51@223@468168261 et . (9.7)

This implies that the bosonic 3-form C? is expanded as

ac? = o,
dCY) = —3iv/5APV g ay0,0, 68 et (9.10)
Since
d(det(Li);d3¢) + hi™ =0, (9.11)

the fermionic contribution of Ef{f& and E%“Z cancel each other. In order to delete the

bosonic terms of Ed + E%“Z, we choose

3 1 Ao Ay A
CO( ) = 3'6140141142600601602 . (912)
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)

It follows from the expressions given in appendix [A.9 that dC’é3 = 0. In summary, we find

that the gluing matrix M leads to the consistent non-relativistic limit of the M2-brane in
AdS,/7xS/4,
The non-relativistic M2-brane action is given as

Sxr = Thr / [chin 4 chin (9.13)
by
with (5.17) and
£y = —Z\[/ dt 6‘i LE(L AT 450 + Lol 4501) + 2L3 LEL 0T 450
2L T2 (L AT 501 + Lyol 4p0-) + LEALEL T @04 +of (914

The bosonic contribution is

/ ¥ = —3i/srs@D / vols, eqpy2dy®
by by
= —3iy/sA 6D /d3§\/sdet 9o€aby>Oyy”

where i’ represent worldvolume directions in S7 or AdSs.
The t-integration is easily done after fixing the k-gauge symmetry by 6, = 0 (see
appendix [f), which leads to

Li=ct, Li=et—0.T9Do_, Li=¢,
A ie 1 a5
L.,=Df_=df_— §eAPA6?_ + ZwABPABG_ ,
(90)i; = (e§)i(ed)jmap - (9.15)

(eé)i is the vielbein on the worldvolume in the static gauge, zh = €. Substituting these
into the non-relativistic action we obtain

2)\2 _ )
SNrR = INR /d3§\/ s det go [9 OiyR0iyEnap + T(4my —ny'®) - 25—’YZD1‘9—}

+T\R / ¥ (9.16)
by
In the flat limit A — 0, this reproduces the non-relativistic action given in [[[]].

9.2 M5-brane

Next we consider an M5-brane for which ¢? = iy/s. In this case the gluing matrix
M = /—sT oA A= g (9.17)
satisfies

MTB1B2 =—-I'pgpM, (9.18)

— 492 —



so that H is of order 2
H = QH, + O(Q?),
Hy = H, +/dt[ LT (LioT 150 + LaT 5504 ) + LG LEL (0T 04 | . (9.19)
The PST part Lpgt is expanded as
TLpst = TarQ 2LE + TN LI 4+ O(QY) (9.20)
with
Ly = V/sdet god®¢,, (9.21)
£t = Vs detgod [308 (g2)ss + 504 ) (M) (922

where g and go are given in (b.1§) and (f.19), and H; is defined as

2

M = %(Hl + AN (9.23)
Noting that
M'Tg .5 =Tp..5.M, (9.24)
h7 is expanded as
Thy = TxpQ 2h& + Tarhi™ + 0(Q%) (9.25)
with
pdiv — iV LAI LS Lol 4, 4. Lo (9.26)
and
pin = B — 5H1h§4), (9.27)

Z — _ A A p—
B = g'f[LAl. LS AT 4 Loy + 2L LDy g, 4. Lo

— A _ e A 1 —
+10L641 . .LOA4L1—5L+OI‘A1___A4A5L,1 + 5L - L644L§45L+0FA1...A5L+0
+20L - LASLA4LA5E+0FA1...A3A4A5L+O

~5096)eg - a ar o L' LZSL%SL%’?} , (9.28)
o~ C[Lg‘Lg? Lol gpL1 + L{LPL 0T 4510
—5(33) ? ea1a2a3a4L“1L“2L“3La4} (9.29)
This implies that the bosonic 6-form C©) is expanded as
TdC©) = TyrQ2dC\Y + TyrdCS® + 0(0?), (9.30)
ac? = o, (9.31)
dCéG) = —%5(1’5)6%._%%2/7683 6056(116 o 4 2)\5(3 Bea,.. aza €0t egier Hy . (9.32)
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Since

LBy = d(det(Lg);d*¢) = —hd™ (9.33)
the fermionic contribution of L&+ L8 cancels out. The bosonic term of LE%, é, € Ao As
6‘040 : eo , is deleted by choosing

6 1 A A
Cé ) = ~ g1 4o~ A€o ey (9.34)

which satisfies dC’é6) = 0. In summary, we find that the gluing matrix M leads to the
consistent non-relativistic limit of the M5-brane in AdS, /7><S7/ 4,

The non-relativistic M5-brane action is composed of E’;gT in (P.22) and

1 . .
L7 = 2/dlﬁ[<5,LAl' LG (LT 41,0 + Lyl 4,..1,0+4)
1 /\A fay fay
+4,LA1 : L644LT5(L71FA1---A4459+ + Lyol'4,..4,4,0-)

A Ast Aut As T
+3|L e L03L14L15L+0PA1"'A3A4A56+

+@L§1 o £§4f’§5i+ofgl...g59+>
+% <IA4641A10B(/§+01“AB97 +L_aT 4504) + 2f,§f,15i+0r@9+> ﬂ1]
+cl¥ (9.35)
The bosonic contribution is
/26’56) = 6c2N1D) /Evolg/5 eglb/ygldyb/ +3¢?A633) /EVOIZByHl

— 3iy/5) /dﬁg\/s det go [25(1’5)62/9/y9/6§yb/ - 5(3’3)8i/y(*31)i/] (9.36)

where £ and ¢’ represent coordinates on ¥; and X% respectively, and y is the transverse
direction in AdSy or S%. * means the Hodge dual in %j.

Let us fix the k-symmetry by 6, = 0. The #-dependent term in H disappears and
so we have H; = H;j in this gauge. The t-integration is easily done, and the action is
drastically simplified as

n n 7 1 7
EJE,ST = dﬁ&/sdet g0 [ —0_~+'D;0_ + Egoj(?iyé(?jyﬁnA_B
1 B i 212
+5 (Hy )ij (Hi)

(4my* — ny'Q)] , (9.37)
0 2 A = 6
chr = /dt025' e D(t )T 5, 5.0- + CF
= d%¢\/sdet go [-0_7'Dif_] + C¥) . (9.38)
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Combining these results, we obtain the non-relativistic M5-brane action

2)\2
Snr = Tnr / d°¢/ sdetgo[ ¢ 0iy20;yBnan + —(4my —ny'?)
1 g _
5 (Hp )i (H) - ze_leia_} + Tar / . (9.39)
by

In the flat limit A — 0, it is reduced to the linearized M5-brane action considered in [fJ.

10. Summary and discussions

We have derived the NH superalgebra for AdS branes as IW contractions of the super-
AdS xS algebras in ten- and eleven-dimensions. Requiring that the isometry on the AdS
brane worldvolume and the Lorentz symmetry in the transverse space extend to the super-
isometry, we classified possible branes. The NH superalgebra contains the super-isometry
as a super-subalgebra: su(2]2) x su(2|2), osp(4]4), osp(6/2) xpsu(2|1) and variants of them
for non-relativistic AdS branes in AdS;xS®, and osp(4]2) x 0sp(4]2), 0sp(6]2) x s0(2]2),
sp(4]2) x osp(4]2), 0sp(8]2) x su(2) and variants of them for non-relativistic AdS M-branes
in AdS, /7><S7/ 4. The possible branes are summarized in table 1 and 4. These contain
1/2 BPS branes obtained by examining an open superstring in AdS5xS® and an open
supermembrane in AdS, /7><S7/ 4. We applied the similar analyses to branes in IIB pp-wave
and M pp-wave. The possible branes are summarized in table 2, 3, 5 and 6 and we derived
the NH superalgebras of these pp-wave branes. It is interesting to apply our procedure to
more general cases such as [pJ].

The WZ terms of AdS branes in ten- and eleven-dimensions are examined by using the
CE cohomology on the super-AdSxS algebras. We find that WZ terms of the AdS branes
in AdS5xS° and AdS4/7><S7/ 4 are non-trivial elements of the CE cohomology except for
those of strings in AdSsxS®.

By taking the non-relativistic limit of the relativistic brane actions obtained above, we
derived non-relativistic Dp-brane actions in AdS5xS® and non-relativistic M-brane actions
in AdSy /7><S7/ 4. We have seen that there exists the consistent non-relativistic limit for
Dp(even,even) for p = 1 mod 4 and Dp(odd,odd) for p = 3 mod 4 in AdS5xS®, and
M2(0,3), M2(2,1), M5(1,5) and M5(3,3) in AdS4xS” and S* x AdS;. We derived the
non-relativistic actions for these branes.

In the flat limit, the non-relativistic AdS Dp- and M2-brane actions are reduced to non-
relativistic flat brane actions [I3, [LI]. The non-relativistic AdS M5-brane action is reduced
to the linearized M5-brane action [FJ. It is interesting to examine these non-relativistic
AdS brane actions further, but is left for future investigations.

It is also interesting to examine the non-relativistic limit of branes in the pp-wave. It
is known that the pp-wave superalgebra is an IW contraction of the AdS superalgebra.
So, the brane actions in the pp-wave can be derived from those in the AdS background by
expanding supercurrents with respect to the contraction parameter A as was presented in
appendix [0 Once having derived the brane action in the pp-wave one can easily extract the
non-relativistic brane actions. These actions can be also derived from the non-relativistic
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actions derived in the present paper by expanding supercurrents with respect to the con-
traction parameter {2. We hope to report these points elsewhere in near future.
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A. LI Cartan one forms

A.1 AdS;xS°
Supervielbeins on the AdSs x S° can be obtained via the coset construction with the coset
supermanifold:
PSU(2,2|4)
AdSs x S5 ~ ’ : Al
5 SO(1,4) x SO4) (A-1)
We parametrize the group manifold as
Qo 0
9=9:90, go=¢e, Q=(Q1,Q2), 0= 6, | (A.2)

where ¢, is concretely specified later. The supervielbeins L4 and L%, and super spin

connection LA are the LI Cartan one forms defined by
1
g 'dg = L4Py + §LABJAB + Qo L, (A.3)
_ 1
g; 'dgs = ¢ Pa+ Sw'Pap, (A.4)

where e and w?P are the vielbein and the spin connection of the AdS;xS°. After some
algebra, we obtain®

= o aM2n2 . coshM —1
LA =t 420 6T @) DO = e 4 2iT4 <T> Do, (A.5)
n=1
= M sinh M
=N " _Dpo= Do A6
nZ:O (2n+1)! M ’ (A.6)

= — M2 = cosh M — 1
AB _  AB . AB - _ AB . AB -
L7 = w™” — 20000 ioy nEZI 2 DO = w?" — 2iIN0T P ioy vz DO (A.7)

The differential d acts as d(F AG) = dEAG+(—1) F AdG (where f is the degree of F'), and commutes
with 6.
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with

~ _ 1 N
M2 =) (r Aio2f T4 — 5Land HFABi02> : (A.8)
A an . 1 aB
DO = do + € T qio00 + i T'aBo, (A.9)
Ty = (-ToZ,T0d), Tap=(-TaI,TanJ). (A.10)

The bosonic subalgebra is a direct product of so(2,4) and so(6), and so we may consider
these parts separately. For an (m,n)-brane, it is convenient to parametrize the group
manifold on the so(2,4) algebra as

gags = gne¥ e, gy = e Fom M Far (A11)
For this parametrization, we obtain
e = e%coshry, (=1,2,...,m,
sinhY = \*
et = ( lnY dy> s
WG — w}l\?a[,
LA _)\2ygsmhrye% 7
Ty
ab 2 [a (COShY —1 Y

where 7“5 = A2y2ybn,, = A2y? and (Y?2), = )\2(y25§ — y%y,). en and wy defined by

_ a 1 -3
gNldgN =ey P+ iw%’Jag (A.13)
are obtained as

e% = coshrj ---coshrp_dz™ ,

- = sinh ry,
wakag _ —)\2$ak

N = coshryyq---coshry_jdz™, k </ (A.14)

Tk
where 77 = X2z z%n;,5, .
The vielbein ¢ and the spin connection w®? of S> are obtained as those of AdS; with
the replacement

Mo N a—d, a—d, m—on. (A.15)

Under the scaling with Q defined in (f.1), the above vielbeins and spin connections are
expanded as

3 3 3 3 3 a1

¢ = + QG O, e =, e =cory, (A.16)

e = Qe+ 0(0%), et =dy ( )

Wk — wgka‘ ) wgka[ = w?\}“a‘, (A.18)

W — —Q)\zyge% + O(Qg)7 ( )

w?® = —202\%ylegytl 4 oY) . (A.20)
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A.2 AdS,/;xS7/*

Supervielbeins on the AdSy/7 x S7/4 can be obtained via the coset construction with the
coset supermanifolds:

OSp(8/4)
SO(3,1) x SO(7)’

OSp(8*]4)
SO(6,1) x SO(4) ~

AdSy x ST ~ AdS; x S ~ (A.21)

Parametrizing the manifolds as g(X, 0) = g,¢’? | we obtain the expression of supervielbeins:

A A _— M2n—2
L* = — 20T —D A.22
et —20 21 T (A.22)
LAB = AB 4 o)\gTAB wm A.23
= w + Z (271)! , ( . )

n=1
M2n

L = — D A.24
nzzo (2n +1)! , ( )

where we have introduced the following quantities:
a — A an L 4B
(DH) :d0+—§€ FAH-FZ(U Tapl,
P 1 .
M2 = NTA060T 4 + 51“‘“99 0T 4B) ,
Ty = (20T, ITy), Tap = (2ITu,ITuy) .

Here 611?/1 and wf/IB are the vielbein and the spin connection, respectively.

Since the bosonic subalgebra is the direct product of so(3,2) (so(5)) and so(8)(s0(6,2)),
we may consider these parts separately as in the case of AdS5xS®. For the former group
manifold, a group element is represented by

g1 = gne¥ e gy = ™" Pam 7" Pay (A.25)
It is straightforward to derive
el = e?\‘f coshr,, (£=1,...,m (A.26)
“ sinhY’ &
a _ d A27
(s o
Wk = 00 (A.28)
hY -1 \°
wib = 82 \2ye (L - dy) , (A.29)
_ - inh
Wl 462)\26%y9781n Ty (A.30)
Ty
with
e% = dx™ coshry ---coshry_q, (A.31)
o _ _ sinh
w}z\;ﬂag _ _4€2>\2xakdxae Smh rg cosh Thal' " coshrp_4 , (A32)

Tk
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where 77 = 46 X\22% 2% g, 4, 7“; = 42 \2y%Pn,, = 4€2X\%y? and Y2 = 462)\2(31255 — y%yp) .
For the latter group manifold, the vielbein and the spin connection can be obtained from
those for the former case with the replacement

a—a, a—d, m—n. (A.33)

Under the Q-scaling (D.1]), these scale as

e = el + Q%5 +0(QY), d=c%, €= e?\,r—g (A.34)
et = Qe+ 0(0%), e =dys, (A.35)
Ww® = wg?’, wg?’ = w?\f}, (A.36)
w® = 0(0?), (A.37)
w® = Q4e2N2eSt + 0(03) | (A.38)

B. k-symmetry

B.1 D-branes in AdS;xS°

Here we recall the k-variation of the action (@) by following [, fa, . Here we consider
both Lorentzian branes and Euclidean branes.

Following (2.4), one can derive a variation of the supercurrents by using the homotopy
formula as follows:

OLA = déz? + npcLP62C4 + npcLAPs2C — 2iLT460
SL = dsf — %(MAf aiool + %LAf 41080,
SL® = dsa® — 2X2L%2® + 2n,4L52% + 2iIALTi5260
SLYY = dsz®t 4+ 20219 52 + 20 LY 524V + 2ALTY Y i0960 (B.1)

where
oxt =o6ZMLY  6atP =oZMLEP, 6% =6ZMLY, (B.2)

A universal feature of the x-variation is

Szt =0. (B.3)
By using (B.]), one can find that
Ongij = —MLGLHT 466 (B.4)
and
0pdF = —2d(LALT 4060) — 0. F = —2LALT 1060 , (B.5)
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where the exact term is deleted by 6, A. By using (B.1) and (B.J), we find that

Oxhpra = d[Cx N ef]erl, Cv = EB C/(f) )

f=even
24/8 _ )
cin) — @T\Q)!LAI cLA2ULT A, (0) Y0900 (B.6)
so that
6elwz = [Co N ]pit, (B.7)

where [o],11 represents the (p + 1)-form part of e.

By using these expressions, one finds that the action (f.1) is invariant under

0x0 = (1+ F) (B.8)
\/5 det (9 +F) Z an',y b 7 ik Finkn
x(=1)"(o)" "2 2 io o 1)!6i1"'ip+1fy,~1...ip+1 , (B.9)
where v; = Lf‘I’A.
Under the 2-scaling, I" is expanded as
I =Ty+0(), (B.10)
- Jssﬁe_;tsgo (pi e L (L) D, () i
=M. (B.11)
Expanding x as
k=Fky+Qr_, kKi=7Pirky (B.12)
leads to
0x0y = (14+To)ky =2k . (B.13)

This implies that the x-symmetry can be gauge fixed by choosing 6 = 0 ince 6,0, |9, —¢ =

2x4 [

For an F-string, we obtain the similar expression with ¢ = —o; and F = 0. Hence the
action is k-invariant, and the k-gauge symmetry is fixed by 6, = 0.

B.2 M-branes in AdS4/7><S7/4

Following [, [, F1]], we recall the s-symmetry of the M-brane actions. Here we shall
consider Euclidean branes as well as Lorentzian branes.
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A variation of the supercurrents is derived from (B.5) as
OLA = déz? — npcdxPLE + npcLAPsxC + 201466,

SL%® = d5a® + 8e2A2L6ab + 21, L%z — 2ALT60
SLYY = dsz®? — 22 N2LY 62Y + 20y LY 62¥' Y — 2XLT¥Y 56,

1. 4= . 1 1
SL = dof + §5xAFAL - %LAFAM - ZéxABI‘ABL + ZLABFABM, (B.14)

where 6z, 6248 and 66 have been defined in (B.J). For the k-variation, we require that

S, =0.

B.2.1 M2-brane

Let us first consider the case of an M2-brane. From (B.14), one can obtain

5!@gij = 4L‘él_/j)r,4(5,€e,

and

Sphy = d(—cLALPLD4p0.0) —  6.LM2 = —cLALPLT Apd,0 .

By using them one can see that the action (B.1]) is invariant under

ivs 1
a (L+ D), sdet g 3!E gk

Under 2-scaling, I' is expanded as
P=Ty+0(Q), To=ivsli1,1,=M.
By expanding k as (B.12), we derive
0k0+ = (14+T0)ky = 2k
which implies that the xk-gauge symmetry is fixed by 64+ = 0.

B.2.2 M5-brane

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)

Next, we consider the case of an M5-brane. A variation of H is taken with (B.14) as follows:

—c0dH = 6xhy = d(—cLALPLT 4p6.0) — 6.H =LALPLI 456,06,

where the exact term is deleted by 0, B . Noting that
2 _ 1 -
Suhy = CQd{ELAI LML, ,000 + SLALP LT 0,0 H] .
we see that

2 - 1 _
S Lz = ¢ {ELAl LA LTy ag000 + SLALP LT 40,0 M.,
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where ¢ = i\/5. The s-invariance of the action is shown by following [F1] (see also [53]).
By using the expressions derived above and the following useful relations

Y= " Eil.“iGrVil i6 > 72 =1
6!y/sdetg ’
621"'ZG—n]l"']n,yjl.“jn —

Vs det g 71’1“46_”7 ’

Gil...i67"k1mk”Ejl...jG_nkl...kn = 871'(6 — n)'é[zjll te 5;2::} )
S *
Hijr = 3H[ijvk} 5 v sdet g €rimnH fmyn , (B.23)

it is shown that the M5-brane action is invariant under the s-variation

00 = (1+D)k, 6,a=0, (B.24)
Vs det 2 g 2
= = g :Y - C_H;‘k'vk’)’wk - L Zl ZGH;ngz 2471526 . (B'25)
V/sdet(g — ic?H*) 2 16y/sdet g 3

Under the Q-scaling, I" is expanded as
I'=Ty+0(Q), (B.26)

sv—s 1 i i
Wﬁ, 11 lﬁ(L 1) .. (LOG)iGFA1---AG = S/ _SPA()---A5 =M, (B27)

which implies that

Iy =

5564_ = (1 + FQ)H+ = 2:‘<L+ . (B28)

Thus the x-symmetry is gauge fixed by 6, = 0.

C. Penrose limit of brane actions

Here we will construct the action of D-branes and M-branes on pp-wave backgrounds via
the Penrose limit, instead of non-relativistic limit. This is a natural application of our
procedure. The Penrose limit of an alternative action of an AdS superstring has been
discussed in [PF]. The result includes Metsaev’s results for F-string [f4 and D3-brane [Fj]
on the maximally supersymmetric pp-wave.

C.1 Branes in IIB pp-wave
We derive the Dp-brane action in the IIB pp-wave from the Dp-brane action in AdSsxS®

S:T/EDBH-EWZ,

Lopr = \/sdet(g + F)dPT'E,  dlwz = hppo = » BP0

n=0
i) = ﬁ [LAI LA LT g g, 0" 0L
0022 A€o L -+ L = g L - L%), (©-1)
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where o = 03 and ¢ = 01. ¢ = /s is required by the k-invariance of the action.
The Penrose limit considered in section 3 is equivalent to scaling the coordinates as

Xt o A2Xt, XT S AXE, 6. — A, (C.2)
and taking the limit A — 0. Under the scaling, LI Cartan one-forms are expanded as

+_Z 2421 + %_Z on+17i %_Z n+17 i
L™ = A L2n+2 ) L' = A L2n+1 ’ L* - A L*2n+1 )
n=0 n=0

= n=0
Ly=Y AL (C.3)
n=0
where
1 - o
Lt= —(L2+L%, Li=/(iL., L.=(L%L%). (C.4)

V2
Under the expansion ([C.3), we derive

B = 2Ly + ML)y ()

g = A2g" +0(AY), g
It follows from”
dF = N[—~iLTL_TyoL_ —iL L T oL, — 2L'L,T;0L_] (C.6)
that
F = AN*F,, + O(AY) (C.7)

where we assume that F' = AQFPP. These imply that

Lo = APFLLE + O(AP™), LHhy = \[s det(gy, + Fpp)d? 16 (C.8)
The factor AP*! is absorbed into the definition of the tension as
T=ACT, (C.9)
One finds that the fermionic part of A"t is scaled as

A termionic = A" By ermionie + O(A*" %), (C.10)

@ntl)) o€

hpp |ferm10n1c - (2n — 1)|
¢ i an—1(T +1

DG e T L

LA LA Ty g, o o L

+L_T-

11412 —1

n+1
o3 o1L_

n+1
oy o1 Ly)

C ¥ ~ ’?n_ _ R X
* (2’1’L — 2)!L L. L™ 2L7F+i1---i2n—2
c .- om_o T 1
Tonogt 2Lyl 5y, 08 o1l
_ ¢ pALLB .. Lies(L T -
+(2n_3)!L L L"...L*” ?’(L,]_“il___l.%_3

LT,

11+92n—3

n+1
o3 To1Ly

oiloy L) . (C.11)

Lt L, L%7 L+ and L_ are understood as L, Ly, Li, L1 and L_ respectively below.
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For the bosonic part, we derive

h(S) ’bosonic - A4h1(£g) ’bosonic + O(A6) 5 (C12)
4
W hosonic = —ic—AL’(L1L2L3L4 + LSLSLTLY) . (C.13)

V2

The O(A®)-term which contains LT disappears in the limit.
To summarize the pp-wave Dp-brane action is given as

Spp = TPP/‘CDBI + Ly (C.14)

with (C.§) and

hyvo = dlyy; = Z Wi, (C.15)
i = ﬁ“ LA gy 0"
4N
—icons—=L~ (L'L’L°L* + L’LOLL®) . (C.16)

NG

This reproduces the pp-wave D3-brane action given in [55] as the p = 3 case. Let g0 = 03
and o = —o1 and replace Lppr with Lnxg or with the Polyakov action, then it is reduced
to the pp-wave F-string action constructed in [54].

The (p+ 2)-form hﬁﬁz can be shown to be a non-trivial element of the CE cohomology
except for hg by following the procedure explained in section 4.1. It is easy to obtain the
(p + 1)-dimensional form of the WZ term as was done in section 4.2.

C.2 Branes in M pp-wave

The Penrose limit considered in section 7 is equivalent to scaling the coordinates as ([C.2)
and taking the limit A — 0. Under the scaling, LI Cartan one-forms are expanded as ([C.3)
where we define Cartan one-forms as

1 4
L* = E(Lu +L%, L=

C.2.1 Penrose limit of M2 brane action

i0 T4t 7
{(L L) for AdSaxST o

(L, L70) for AdS;xS*

We consider the Penrose limit of the M2-brane action

S = T/ﬁNG + Lwz , (C.18)
Lng = /sdetg, (C.19)
dlwyz = hy = cELALBEI‘ABL - %eal...a4La1 . L“4] (C.20)

where ¢ = iy/s is required by the k-invariance of the action. Under the expansion (C.3J),
Lne is expanded as

Lng = NLY, +O(N), LY, = \/sdet gy, (C.21)
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while dCwy = h4 is expanded as

hy = APRIP + O(AP), (C.22)

1 _ 6
hEP — chALBLFABL + —L*L1L2L3L4] : (C.23)

V2

The A? factor is absorbed into the definition of the tension as T = A_3Tpp. The pp-wave
M2-brane action is given as

S =Ty /ﬁﬁfg + L7 (C.24)

with (CZ0) and A2” = dC?2, with (OZJ).
C.2.2 Penrose limit of M5-brane action

Next we will consider the M5-brane action

S = T/EPST + Lwz, (C.25)
with
v/ s det .
Lpgr = \/s det(gy; — ic2H) +C2¥H*”HM, (C.26)
HZ] = Hijkvk, H*U = H*ijkvk, U = L ;
V9% 0;a0,a
H=H +C3 H*ijk — #a’jklmn?{l H = dB
’ 3ly/sdet g e
and
dlwy = h7, hy=hT — gh(4)H’ (C.27)
1 - A
h® = chALBLPABL . i—!fal---a4L“1 -.-Lﬂ , (C.28)
1 - / ’
B — 2 [ELAI .. LA5LFA1...A5L — Wea’1~~~a’7Lal e La7] , (C.29)
—edH = h¥ (C.30)

with ¢? = iy/s for the s-invariance of the action.
Observe that under the expansion (C.J),

a=ap, vi=A"+O0), Hy=NHT +O0N), Hiy=ANHT+O0(AY,

HR = AR L O(ATY), MY = APHP + O(AY) (C.31)
where we assume that H = A3H,,. These imply that

Lest = ALEsy +O(A%),

" v/ s det y
Clip = s det(glf — ic2HI") + CQ%H;;JHZP. (C.32)
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The WZ term hy is expanded as

&
h = AR g = i) — S M, (C.33)
1 . 6A . _
KD = 2 [gLAl LALT A L — Nk L4---L9] , (C.34)
1 e 6
4) _ At B —r1lr27y314
hy) = e[ SLALPLTasL + AL TTL |- (C.35)

The AS factor is absorbed into the definition of the tension as T' = A*6Tpp. The pp-wave

M5-brane action is given as

S =Ty [ Cltin + U (:30)

with (C33) and A2 = dL?, with (T33).

Following the procedure explained in section 8.1, one can show that the (p + 2)-form

h%o is a non-trivial element of the CE cohomology. The (p + 1)-dimensional form of the

WZ term can be obtained easily as was done in section 8.2.
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