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AdS×S superalgebras as Inönü-Wigner contractions. It is shown that the directions along

which the AdS-brane worldvolume extends are restricted by requiring that the isometry on

the AdS-brane worldvolume and the Lorentz symmetry in the transverse space naturally ex-

tend to the super-isometry. We also derive Newton-Hooke superalgebras for pp-wave branes

and show that the directions along which a brane worldvolume extends are restricted. Then

the Wess-Zumino terms of the AdS branes are derived by using the Chevalley-Eilenberg

cohomology on the super-AdS×S algebra, and the non-relativistic limit of the AdS-brane
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1. Introduction

The AdS/CFT conjecture [1] predicts that type IIB superstring theory in AdS5×S5 is dual

to the four-dimensional N = 4SU(N) super Yang-Mills theory in large N limit. Though

it is too hard to analyze the full AdS superstring, Berenstein-Maldacena-Nastase (BMN)

found a nice way to extract a solvable subsector (referred to as BMN sector) [2]. Taking

this subsector corresponds to the so-called Penrose limit for the AdS geometry [3], and

the relevant symmetry to the BMN sector is the pp-wave superalgebra, which is obtained

as an Inönü-Wigner (IW) contraction [4] of the super-AdS5×S5 algebra [5] (see [6] for the

eleven-dimensional cases).

A non-relativistic limit of strings in flat spacetime provides another solvable sector [7]

(see also [8]). This limit is a truncation of the full theory in the sense that light states

satisfying a Galilean invariant dispersion relation are kept and the rest decouples. The

relevant symmetry is the Galilean limit of the Poincaré algebra. The non-relativistic flat

branes are examined in [9 – 13]. In [14, 15] these studies have been extended to branes

in AdS spaces. In particular a Lorentzian F-string in AdS5×S5, i.e. AdS2 brane, was

examined in [15]. They showed that the F-string theory in AdS5×S5 is reduced to a free

theory in the non-relativistic limit, and so the resulting theory is exactly solvable. In the

non-relativistic limit, the super-AdS5×S5 algebra is also contracted to the Newton-Hooke

(NH) superalgebra for the F-string. Then the isometry of the AdS2-brane worldvolume,

the AdS2 algebra so(1,2), and the Lorentz symmetry in the transverse space, so(3)×so(5),

extend to a super-isometry algebra.

In this paper we consider D-branes in AdS5×S5 and M-branes in AdS4/7×S7/4. First we

examine D-branes in AdS5×S5. In addition to AdS2 brane, there exist various AdS branes

in AdS5×S5, (m,n) branes of which worldvolume extends along m directions in AdS5

and n-directions in S5. In our previous works [16 – 19], we have classified some possible

configurations of the D-branes in AdS5×S5 by examining the κ-variation surface terms of an

open superstring. Here we will classify possible configurations of D-branes by requiring that

the isometry of the AdS brane worldvolume AdSm×Sn (Hm×Sn) and the Lorentz symmetry
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in the transverse space E
5−m ×E

5−n (E4−m,1 ×E
5−n), i.e., so(m− 1, 2)×so(n + 1)×so(5−

m)×so(5 − n) for a Lorentzian brane and so(m, 1)×so(n + 1)×so(4 − m, 1)×so(5 − n) for

a Euclidean brane, naturally extend to the super-isometry. The result surely contains our

previous result, but some new configurations are allowed to exist. We furthermore derive

the NH superalgebras for these branes as IW contractions of the super-AdS5×S5 algebra.

The similar analyses are applied to branes in IIB pp-wave, and derive the NH superalgebras

for these branes as IW contractions of the IIB pp-wave superalgebra.

The Wess-Zumino (WZ) terms for p-branes in flat spacetime can be classified [20] as

non-trivial elements of the Chevalley-Eilenberg (CE) cohomology [21]. This is generalized

to D-branes in [22, 23] by introducing an additional two form which corresponds to a

modified field strength of the background B field. Here we examine the WZ terms for AdS

branes by using the CE cohomology on g of the superspace

G = PSU(2, 2|4)/(SO(4, 1) × SO(5)) , i.e. “super-AdS5×S5”/“Lorentz” .

We show that the WZ terms of AdS branes can be classified as non-trivial elements of the

CE cohomology, except for the WZ term of a string which is a trivial element [24, 25].

Expanding the supercurrents with respect to the scaling used in the IW contraction,

we obtain the non-relativistic limit of the brane action. In comparison to the Penrose limit

in which the leading terms in the expansion contribute to the pp-wave brane actions (see

appendix C), in the non-relativistic limit the leading order terms of the Dirac-Born-Infeld

(Nambu-Goto) part and the WZ part cancel out each other, and the next-to-leading order

terms contribute to the non-relativistic action. We find that the consistent non-relativistic

limit exists only for Dp (even, even) for p = 1 mod 4 and Dp (odd, odd) for p = 3 mod 4 in

AdS5×S5. We derive the non-relativistic AdS D-brane action and find that it is reduced to

a simple action by fixing the κ-gauge symmetry and the worldvolume reparametrization.

While the non-relativistic AdS D-string action is a free field action, the non-relativistic

AdS Dp-brane action (p > 1) contains an additional term which originates from the flux

contribution in the WZ term. The non-relativistic flat D-brane actions obtained in [12] are

reproduced as a flat limit of the non-relativistic AdS D-brane actions.

Next we examine a non-relativistic limit of M-branes in AdS4/7×S7/4. The NH super-

algebra for M-branes are derived as IW contractions of the super-AdS4/7×S7/4 algebras.

To achieve this, we show that the directions along which a brane worldvolume extends are

restricted by requiring that the isometry of the AdS brane worldvolume and the Lorentz

symmetry in the transverse space naturally extend to the super-isometry, and that possible

M-branes are classified. As expected, the configurations obtained in [26, 27] by examin-

ing the κ-variation surface term of an open supermembrane are contained in the above

classification. The similar analyses are applied to branes in M pp-wave, and derive the

NH superalgebras for these branes as IW contractions of the M pp-wave superalgebra. We

obtain the WZ terms of AdS branes as non-trivial elements of the CE cohomology on g of

the superspace

G =OSp(8|4)/(SO(3,1)×SO(7)) or OSp(8∗|4)/(SO(4)×SO(6,1)).

– 3 –
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We find that the non-relativistic limit exists for M2 (0,3), M2 (2,1), M5 (1,5) and M5

(3,3) in AdS4×S7 and S4 × AdS7. By taking the non-relativistic limit of these AdS brane

actions, we derive the non-relativistic M-brane actions in AdS4/7×S7/4. It is shown that by

fixing the κ-gauge symmetry and the reparametrization the non-relativistic action for AdS

M2- and AdS M5-branes is reduced to a simple action which contains an additional term

originating from the flux contribution of the WZ term. The non-relativistic flat M2-brane

action given in [11] is reproduced as a flat limit of the non-relativistic AdS M2-brane action.

This paper is divided into the two parts. Sections 2-5 are devoted to studies of AdS

branes in ten-dimensions, and those in eleven-dimensions are examined in sections 6-9. In

section 2, NH superalgebras for branes in AdS5×S5 are derived as IW contractions of the

super-AdS5×S5 algebra. It is shown that the directions along which the AdS brane world-

volume extends are restricted by requiring that the isometry on the AdS brane worldvolume

and the Lorentz symmetry in the transverse space naturally extend to the super-isometry.

The similar analyses are applied to branes in IIB pp-wave in section 3. WZ terms of AdS

branes are derived by using the CE cohomology on the AdS×S superalgebra in section 4.

Examining a non-relativistic limit of AdS brane actions, we obtain non-relativistic AdS

brane actions in section 5. From section 6, M-theory in AdS4/7×S7/4 is examined. We de-

rive NH superalgebras for M-branes as IW contractions of the super-AdS4/7×S7/4 algebras

in section 6. The similar analyses are applied to branes in M pp-wave in section 7. After

deriving WZ terms of AdS M-branes by using the CE cohomology on the AdS4/7×S7/4

superalgebras in section 8, we examine the non-relativistic limit of AdS M-brane actions

in section 9. The last section is devoted to a summary and discussions.

The supervielbeins and the super spin-connections are given in appendix A. In ap-

pendix B, the κ-symmetry of Euclidean/Lorentzian brane actions is derived. Our construc-

tion of brane actions is applicable to branes in a pp-wave by taking the Penrose limit instead

of non-relativistic limit. In fact, we derive brane actions in the pp-wave in appendix C.

2. NH superalgebra of branes in AdS5×S5

The super-AdS5×S5 algebra, psu(2,2|4), is generated by translation PA = (Pa, Pa′), Lorentz

rotation JAB = (Jab, Ja′b′) and Majorana-Weyl supercharges QI(I = 1, 2) as

[Pa, Pb] = λ2Jab , [Pa′ , Pb′ ] = −λ2Ja′b′ ,

[Pa, Jbc] = ηabPc − ηacPb , [Pa′ , Jb′c′ ] = ηa′b′Pc′ − ηa′c′Pb′ ,

[Jab, Jcd] = ηbcJad + 3-terms , [Ja′b′ , Jc′d′ ] = ηb′c′Ja′d′ + 3-terms ,

[QI , PA] = −λ

2
QJ(iσ2)JI Γ̂A , [QI , JAB ] = −1

2
QIΓAB ,

{QI , QJ} = 2iCΓAδIJh+PA − iλCΓ̂AB(iσ2)IJh+JAB , (2.1)

where a = 0, . . . , 4 and a′ = 5, . . . , 9 are vector indices of AdS5 and S5 respectively. The

gamma matrix ΓA ∈ Spin(1,9) satisfies

{ΓA,ΓB} = 2ηAB , (ΓA)T = −CΓAC−1 , CT = −C (2.2)
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where C is the charge conjugation matrix. We use almost positive Minkowski metric ηAB

and define

Γ̂A = (−ΓaI,Γa′J ) , Γ̂AB = (−ΓabI,Γa′b′J ) , I = Γ01234 , J = Γ56789 ,

QIh+ = QI , h+ =
1

2
(1 + Γ11) , Γ11 = Γ01···9 , (2.3)

and λ = 1/R where R is the radii of AdS5 and S5 .

By using an element g ∈ PSU(2,2|4), a left-invariant (LI) Cartan one-form is defined as

Ω = g−1dg ≡ LAPA +
1

2
LABJAB + QIL

I . (2.4)

Then the Maurer-Cartan (MC) equation, which is satisfied by LI Cartan one-forms

dLÂ =
1

2
LB̂LĈfĈB̂

Â , Ω = LÂTÂ , (2.5)

is equivalent to the superalgebra [TÂ, TB̂}=fÂB̂
ĈTĈ . The Jacobi identities f[ÂB̂

D̂f|D̂|Ĉ)
Ê =

0 of the commutation relation of the superalgebra is stated as the nilpotency of the differ-

ential, d2 = 0 . Thus (2.1) is equivalent to

dLA = −ηBCLABLC + iL̄ΓAL ,

dLab = −λ2LaLb − ηcdL
caLbd + iλL̄ΓabIiσ2L ,

dLa′b′ = +λ2La′

Lb′ − ηc′d′L
c′a′

Lb′d′ − iλL̄Γa′b′J iσ2L ,

dLα = −λ

2
LAΓ̂Aiσ2L − 1

4
LABΓABL . (2.6)

We derive NH superalgebras for AdS branes as IW contractions of the super-AdS5×S5

algebra.

First we consider the bosonic subalgebra. Let us introduce the following coordinates:

Ā = A0, . . . , Ap , A = Ap+1, . . . , A9 , (2.7)

where Ā = (ā, ā′) represent the worldvolume directions of the AdS brane. When the

worldvolume extends along m directions in AdS5 and n directions in S5, we call it an

(m,n)-brane. We rescale the generators as follows:

PA → 1

Ω
PA , JĀB → 1

Ω
JĀB . (2.8)

The limit Ω → 0 leads to the NH algebra for the AdS brane

[Pā, Pb̄] = λ2Jāb̄ , [Pā′ , Pb̄′ ] = −λ2Jā′ b̄′ ,

[Pā, Pb] = λ2Jāb , [Pā′ , Pb′ ] = −λ2Jā′b′ ,

[PĀ, JB̄C̄ ] = ηĀB̄PC̄ − ηĀC̄PB̄ , [PA, JBC ] = ηABPC − ηACPB ,

[PĀ, JB̄C ] = ηĀB̄PC ,

[JĀB̄ , JC̄D̄] = ηĀD̄JB̄C̄ + 3-terms , [JAB , JCD] = ηADJBC + 3-terms ,

[JĀB̄ , JC̄D] = ηB̄C̄JĀD − ηĀC̄JB̄D , [JAB , JC̄D] = ηBDJC̄A − ηADJC̄B . (2.9)

– 5 –



J
H
E
P
1
0
(
2
0
0
6
)
0
7
8

ρ 1-brane 3-brane 5-brane 7-brane 9-brane

σ1, σ3 (2,0), (0,2) (4,2), (2,4)

iσ2 (3,1), (1,3) (5,3), (3,5)

1 (1,1) (5,1), (3,3), (1,5) (5,5)

Table 1: Branes in AdS5×S5

This is the NH algebra of a brane given in [14] (see also [28]). The NH algebra contains two

subalgebras. One is the isometry of (m,n)-brane worldvolume generated by {PĀ, JĀB̄},
the AdSm×Sn algebra so(m − 1, 2)×so(n + 1) for a Lorentzian brane and the Hm×Sn

algebra so(m, 1)×so(n + 1) for a Euclidean brane. The other is the Poincaré algebra,

iso(5 −m)×iso(5 − n) for a Lorentzian brane and iso(4 −m, 1)×iso(5 − n) for a Euclidean

brane, generated by {PA, JAB} which is the isometry of the transverse space E
5−m ×E

5−n

and E
4−m,1 × E

5−n respectively.

Next, we consider the fermionic part. Let us introduce a condition

θ = Mθ with M = `ΓĀ0···Āp ⊗ ρ (2.10)

where `2(−1)[
p+1
2

]ρ2 = 1 for M2 = 1. The 2×2 matrix ρ is determined below. As θ = h+θ,

[M,h+] = 0 is required so that p = odd. We demand that M satisfies following relations

M ′ΓĀ = ΓĀM , (2.11)

M ′Γ̂ĀB̄iσ2 = Γ̂ĀB̄iσ2M , (2.12)

where M ′ = C−1MT C. If these are satisfied, the isometry of the AdS brane worldvolume

and the Lorentz symmetry in the transverse space, so(m−1, 2)×so(n+1)×so(5−m)×so(5−
n) for a Lorentzian brane and so(m, 1)×so(n + 1)×so(4 − m, 1)×so(5 − n) for a Euclidean

brane, naturally extend to the super-isometry as will be seen below. It is straightforward

to see that the first condition is satisfied by ρT = ρ for p = 1 mod 4 and by ρT = −ρ

for p = 3 mod 4. The second condition restricts the direction along which branes extend.

Since, for ρ = 1(p = 1 mod 4) and ρ = iσ2(p = 3 mod 4), we derive

M ′Γ̂ĀB̄iσ2 = (−1)dΓ̂ĀB̄iσ2M , (2.13)

we have (odd,odd)-branes. d denotes the number of Dirichlet directions contained in AdS5.

On the other hand, for ρ = σ1, σ3 (p = 1 mod 4), since

M ′Γ̂ĀB̄iσ2 = −(−1)dΓ̂ĀB̄iσ2M , (2.14)

(even,even)-branes are allowed. In both cases, we have ` =
√−s and

M ′ = −M . (2.15)

We summarize branes in table 1. The 9-brane is nothing but AdS5×S5 itself as M = h+ in

this case. This table shows possible 1/2 supersymmetric subspaces which are not necessarily

– 6 –
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1/2 BPS Dirichlet branes. The (even,even)-branes with p = 1 mod 4 and (odd,odd)-branes

with p = 3 mod 4 are 1/2 BPS Dirichlet branes of F- and D-strings in AdS5×S5 derived

in [16 – 18],1 while (odd,odd)-branes with p = 1 mod 4 are not 1/2 BPS Dirichlet branes.

In the presence of gauge field condensates, see [19]. As will be seen in section 4, we find

consistent non-relativistic limits for 1/2 BPS AdS branes.

Let us decompose Qα with the projection operator

P± =
1

2
(1 ± M) as Q = Q+ + Q− , Q±P± = Q± , (2.16)

and rescale fermionic generators as

Q+ → Q+ , Q− → 1

Ω
Q− . (2.17)

Taking Ω → 0 leads to (anti-)commutation relations

[PĀ, Q+] =
λ

2
Q+Γ̂Āiσ2 , [PA, Q+] =

λ

2
Q−Γ̂Aiσ2 , [PĀ, Q−] =

λ

2
Q−Γ̂Āiσ2 ,

[JĀB̄ , Q±] =
1

2
Q±ΓĀB̄ , [JAB , Q±] =

1

2
Q±ΓAB , [JĀB , Q+] =

1

2
Q−ΓĀB ,

{Q+, Q+} = 2iCΓĀh+P+PĀ − iλCΓ̂ĀB̄iσ2h+P+JĀB̄ − iλCΓ̂ABiσ2h+P+JAB ,

{Q+, Q−} = 2iCΓAh+P−PA − 2iλCΓ̂ĀBiσ2h+P−JĀB . (2.18)

In summary, we have derived the NH superalgebra for AdS brane, (2.9) and (2.18), as an

IW contraction of psu(2,2|4). The NH superalgebra for an F-string [15] is contained as the

p = 1 case.

We note that generators PĀ, JĀB̄ , JAB and Q+ form a super-subalgebra

[Pā, Pb̄] = λ2Jāb̄ , [Pā′ , Pb̄′ ] = −λ2Jā′ b̄′ , [PĀ, JB̄C̄ ] = ηĀB̄PC̄ − ηĀC̄PB̄ ,

[JĀB̄ , JC̄D̄] = ηĀD̄JB̄C̄ + 3-terms , [JAB , JCD] = ηADJBC + 3-terms ,

[PĀ, Q+] =
λ

2
Q+Γ̂Āiσ2 , [JĀB̄, Q+] =

1

2
Q+ΓĀB̄ , [JAB, Q+] =

1

2
Q+ΓAB ,

{Q+, Q+} = 2iCΓĀh+P+PĀ − iλCΓ̂ĀB̄iσ2h+P+JĀB̄ − iλCΓ̂ABiσ2h+P+JAB , (2.19)

which is a supersymmetrization of so(m − 1, 2)×so(n + 1)×so(5 − m)×so(5 − n) for a

Lorentzian brane and so(m, 1)×so(n+1)×so(4−m, 1)×so(5−n) for a Euclidean brane. The

superalgebra for the (5,5)-brane is psu(2,2|4). Since the dimension of the bosonic subalgebra

is 14 for (1,1)-, (3,1)-, (1,3)- and (3,3)-branes, 16 for (2,0)-, (0,2)-, (4,2)-, (2,4)-branes, and

22 for (5,1)-, (1,5)-, (5,3)- and (3,5)-branes, one may guess the corresponding superalgebras

as those including variants of su(2|2)×su(2|2), osp(4|4) and osp(6|2)×psu(2|1), respectively.

The existence of these superalgebras is ensured by (2.11) and (2.12).

1The brane probe analysis [29] is also consistent with this result.
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It is straightforward to derive MC equations for the AdS brane NH superalgebra (2.9)

and (2.18)

dLĀ = −ηB̄C̄LĀB̄LC̄ + iL̄+ΓĀL+ , (2.20)

dLA = −ηB̄C̄LAB̄LC̄ − ηBCLABLC + iL̄+ΓAL− + iL̄−ΓAL+ , (2.21)

dLāb̄ = −λ2LāLb̄ − ηc̄d̄L
c̄āLb̄d̄ − iλL̄+Γ̂āb̄iσ2L+ , (2.22)

dLā′ b̄′ = +λ2Lā′

Lb̄′ − ηc̄′d̄′L
c̄′ā′

Lb̄′d̄′ − iλL̄+Γ̂ā′ b̄′iσ2L+ , (2.23)

dLAB = −ηCDLCALBD − iλL̄+Γ̂ABiσ2L+ , (2.24)

dLāb = −λ2LāLb − ηc̄d̄L
c̄āLbd̄ − ηcdL

cāLbd

−iλL̄+Γ̂ābiσ2L− − iλL̄−Γ̂ābiσ2L+ , (2.25)

dLā′b′ = +λ2Lā′

Lb′ − ηc̄′d̄′L
c̄′ā′

Lb′d̄′ − ηc′d′Lc′ā′

Lb′d′

−iλL̄+Γ̂ā′b′iσ2L− − iλL̄−Γ̂ā′b′iσ2L+ , (2.26)

dL+ = −λ

2
LĀΓ̂Āiσ2L+ − 1

4
LĀB̄ΓĀB̄L+ − 1

4
LABΓABL+ , (2.27)

dL− = −λ

2
LĀΓ̂Āiσ2L− − λ

2
LAΓ̂Aiσ2L+

−1

4
LĀB̄ΓĀB̄L− − 1

4
LABΓABL− − 1

2
LĀBΓĀBL+ . (2.28)

An alternative way to derive these MC equations is to rescale the Cartan one-forms in the

MC equation (2.6) as

LA → ΩLA , LĀB → ΩLĀB , L− → ΩL− (2.29)

and take the limit Ω → 0 . This provides the leading order terms of the expansion considered

in the non-relativistic limit in section 4.

Finally, let us consider an alternative scaling

λ → 1

ω
λ , PĀ → 1

ω
PĀ , JĀB → ωJĀB , Q+ → 1√

ω
Q+ , Q− → √

ωQ− . (2.30)

Since λ is absorbed as

PĀ → 1

λ
PĀ , PA → 1

λ
PA , Q± → 1√

λ
Q± , (2.31)

this is equivalent to (2.8) and (2.17) with Ω = 1/ω . In this paper, we use (2.8) and (2.17)

instead of (2.30), though both limits lead to the same results.

3. NH superalgebra of branes in IIB PP-wave

Type IIB PP-wave superalgebra is obtained as an IW contraction of the super-AdS5×S5

algebra. First of all, let us introduce the following quantities for later convenience,

P± =
1√
2
(P9 ± P0) , P ∗

î
= (P ∗

i = J0i, P
∗
i′ = J9i′) , (3.1)

Q = Q(+) + Q(−) , Q(±) = Q(±)`± , `± =
1

2
Γ±Γ∓ , Γ± =

1√
2
(Γ9 ± Γ0)
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where i = 1, 2, 3, 4 and i′ = 5, 6, 7, 8. The IW contraction is performed in [5] by scaling

generators in the super-AdS5×S5 algebra as

P+ → 1

Λ2
P+ , Pî →

1

Λ
Pî , P ∗

î
→ 1

Λ
P ∗

î
, Q(+) → 1

Λ
Q(+) , (3.2)

and then taking the limit Λ → 0 . After the contraction, the super-AdS5×S5 algebra is

reduced to the IIB pp-wave superalgebra

[P−, Pî] = − λ2

√
2
P ∗

î
, [P−, P ∗

î
] =

1√
2
Pî , [Pî, P

∗
ĵ
] = − 1√

2
ηîĵP+ ,

[Pî, Jĵk̂] = ηîĵPk̂ − ηîk̂Pĵ , [P ∗
î
, Jĵk̂] = ηîĵP

∗
k̂
− ηîk̂P

∗
ĵ

, [Jîĵ, Jk̂l̂] = ηĵk̂Jîl̂ + 3-terms ,

[Q(−), Pî] =
1

2
Q(+)ΓîIiσ2 , [Q(+), P−] = −1

2
Q(+)Γ+Iiσ2 ,

[Q(−), P ∗
î
] =

1

2
√

2
Q(+)Γ+Γî , [Q(±), Jîĵ] = −1

2
Q(±)Γîĵ ,

{Q(+), Q(+)} = 2iCΓ−P+ ,

{Q(−), Q(−)} = 2iCΓ+P− − i
λ√
2
CΓ̂îĵiσ2Jîĵ ,

{Q(±), Q(∓)} = 2iCΓî`∓Pî + iλCΓ̂î`∓iσ2P
∗
î

, (3.3)

where Γ̂îĵ = (−ΓijΓ+f,Γi′j′Γ+g), Γ̂î = (Γif,Γi′g), f = Γ1234 and g = Γ5678 . The bosonic

subalgebra, the pp-wave algebra, is the semi-direct product of the Heisenberg algebra

generated by {Pî, P
∗
î
} with an outer automorphism P− and the Lorentz algebra generated

by Jîĵ .

3.1 Lorentzian branes

Here we consider the case that (+,−) are contained in the Neumann directions. Let us

denote the Neumann and the Dirichlet directions, respectively, as

Ā = (+,−, ¯̂i) , A = î . (3.4)

We derive the NH superalgebra of a Lorentzian pp-wave brane as an IW contraction of the

pp-wave superalgebra.

Let us first consider the bosonic subalgebra. We rescale generators in the pp-wave

algebra as

PA → 1

Ω
PA , J¯̂iĵ

→ 1

Ω
J¯̂iĵ

, P ∗
î
→ 1

Ω
P ∗

î
, (3.5)

and then take the limit Ω → 0 . The resulting algebra is the NH algebra of a pp-wave brane

[P−, P¯̂i
] = − λ2

√
2
P ∗

¯̂i
, [P−, Pî] = − λ2

√
2
P ∗

î
, [P−, P ∗

¯̂i
] =

1√
2
P¯̂i

, [P−, P ∗
î
] =

1√
2
Pî ,

[P¯̂i
, P ∗

¯̂i
] = − 1√

2
η¯̂i¯̂j

P+ , [P¯̂i
, J¯̂jk̂

] = η¯̂i¯̂j
Pk̂ , [J¯̂iĵ

, P ∗
¯̂
k
] = −η¯̂i

¯̂
k
P ∗

ĵ
, (3.6)
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and

[P¯̂i
, J¯̂j

¯̂
k
] = η¯̂i¯̂j

P¯̂
k
− η¯̂i

¯̂
k
P¯̂j

, [Pî, Jĵk̂] = ηîĵPk̂ − ηîk̂Pĵ ,

[J¯̂i¯̂j
, P ∗

¯̂
k
] = η¯̂j

¯̂
k
P ∗

¯̂i
− η¯̂i

¯̂
k
P ∗

¯̂j
, [Jîĵ, P

∗
k̂
] = ηĵk̂P

∗
î
− ηîk̂P

∗
ĵ

,

[J¯̂i¯̂j
, J¯̂

k
¯̂
l
] = η¯̂j

¯̂
k
J¯̂i

¯̂
l
+ 3-terms , [Jîĵ, Jk̂l̂] = ηĵk̂Jîl̂ + 3-terms ,

[J¯̂i¯̂j
, J¯̂

kl̂
] = η¯̂j

¯̂
k
J¯̂il̂

− η¯̂i
¯̂
k
J¯̂jl̂

, [Jîĵ, J¯̂
kl̂

] = ηîl̂Jĵ
¯̂
k
− ηĵl̂Jî

¯̂
k

. (3.7)

Next we consider the fermionic part. We introduce a matrix M

M = `Γ+−Ā1···Āp−1ρ (3.8)

where ρ is a 2 × 2 matrix. Then Q(±) are decomposed into the two parts as follows:

Q
(•)
± = ±Q

(•)
± M . (3.9)

The chirality of Q(•) is preserved only when p =odd. In addition, requiring that M2 = 1 ,

we obtain the following condition,

`2(−1)[
p−1
2

]ρ2 = 1 . (3.10)

Then we demand that

M ′ΓĀ = ΓĀM , (3.11)

M ′Γ̂
¯̂i¯̂jiσ2 = Γ̂

¯̂i¯̂jiσ2M (3.12)

where

M ′ = C−1MTC = ±(−1)p+[ p−1
2

]M , ρT = ±ρ . (3.13)

Since

M ′ΓĀ = ±(−1)[
p−1
2

]ΓĀM , ρT = ±ρ, (3.14)

the first condition is satisfied by

±(−1)[
p−1
2

] = 1 , ρT = ±ρ . (3.15)

This implies that ρT = ρ for p = 1 mod 4 and ρT = −ρ for p = 3 mod 4 , and that

M ′ = −M and ` = 1 . The second condition is rewritten as

±(−1)n = 1 , ρT =

{
1, iσ2

σ1, σ3
(3.16)

where n is the number of the Neumann directions contained in {1, 2, 3, 4} and {5, 6, 7, 8}
so that the directions along which a pp-wave brane worldvolume extends are restricted.

We summarize the results in table 2. This shows possible 1/2 supersymmetric subspaces

which are not necessarily Dirichlet branes of a string. In fact, (+,−;odd,odd)-branes with
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ρ 1-brane 3-brane 5-brane 7-brane 9-brane

σ1, σ3 (+,−; 1, 3)

(+,−; 3, 1)

iσ2 (+,−; 0, 2) (+,−; 4, 2)

(+,−; 2, 0) (+,−; 2, 4)

1 (+,−) (+,−; 0, 4) (+,−; 4, 4)

(+,−; 2, 2)

(+,−; 4, 0)

Table 2: Lorentzian pp-wave branes.

p = 1 mod 4 and (+,−;even,even)-branes with p = 3 mod 4 are 1/2 BPS D-branes of an

open pp-wave superstring [30, 16], while (+,−;even,even)-branes with p = 1 mod 4 are

not. Our results are consistent with those obtained in the brane probe analysis [29], the

supergravity analysis [31] and the CFT analysis in the light-cone gauge [32 – 35].

Scaling Q
(•)
± as

Q
(•)
+ → Q

(•)
+ , Q

(•)
− → 1

Ω
Q

(•)
− (3.17)

and taking the limit Ω → 0, we obtain the fermionic part of the NH superalgebra

[Q
(−)
± , P¯̂i

] = − 1

2
√

2
Q

(+)
± Γ¯̂i

Γ+fiσ2 , [Q
(−)
+ , Pî] = − 1

2
√

2
Q

(+)
− ΓîΓ+fiσ2 ,

[Q
(+)
± , P−] = − 1√

2
Q

(+)
± fiσ2 , [Q

(−)
± , P ∗

¯̂i
] =

1

2
√

2
Q

(+)
± Γ+Γ¯̂i

,

[Q
(−)
+ , P ∗

î
] =

1

2
√

2
Q

(+)
− Γ+Γî , [Q

(•)
± , J¯̂i¯̂j

] = −1

2
Q

(•)
± Γ¯̂i¯̂j

, [Q
(•)
± , Jîĵ] = −1

2
Q

(•)
± Γîĵ ,

[Q
(±)
+ , J¯̂iĵ

] = −1

2
Q

(±)
− Γ¯̂iĵ

, {Q(+)
+ , Q

(+)
+ } = 2iCΓ−P+P+ ,

{Q(−)
+ , Q

(−)
+ } = 2iCΓ+P−P+ − i

λ√
2
CΓ̂

¯̂i¯̂jiσ2`−P+J¯̂i¯̂j
− i

λ√
2
CΓ̂îĵiσ2`−P+Jîĵ ,

{Q(−)
± , Q

(−)
∓ } = −2i

λ√
2
CΓ̂

¯̂iĵiσ2`−P∓J¯̂iĵ
,

{Q(+)
+ , Q

(−)
+ } = 2iCΓ

¯̂i`−P+P¯̂i
+ iλCΓ̂

¯̂iiσ2`−P+P ∗
¯̂i

,

{Q(+)
± , Q

(−)
∓ } = 2iCΓî`−P∓Pî + iλCΓ̂îiσ2`−P∓P ∗

î
. (3.18)

In summary we have obtained the NH superalgebra of a pp-wave brane as (3.6), (3.7)

and (3.18). This superalgebra can be derived from the NH superalgebra of an AdS

brane (2.9) and (2.18) by an IW contraction.

We note that the NH superalgebra of a pp-wave brane contains a super-subalgebra
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generated by P±, P¯̂i
, P ∗

¯̂i
, J¯̂i¯̂j

, Jîĵ and Q
(±)
+

[P−, P¯̂i
] = − λ2

√
2
P ∗

¯̂i
, [P−, P ∗

¯̂i
] =

1√
2
P¯̂i

, [P¯̂i
, P ∗

¯̂i
] = − 1√

2
η¯̂i¯̂j

P+ ,

[P¯̂i
, J¯̂j

¯̂
k
] = η¯̂i¯̂j

P¯̂
k
− η¯̂i

¯̂
k
P¯̂j

, [J¯̂i¯̂j
, P ∗

¯̂
k
] = η¯̂j

¯̂
k
P ∗

¯̂i
− η¯̂i

¯̂
k
P ∗

¯̂j
,

[J¯̂i¯̂j
, J¯̂

k
¯̂
l
] = η¯̂j

¯̂
k
J¯̂i

¯̂
l
+ 3-terms , [Jîĵ, Jk̂l̂] = ηĵk̂Jîl̂ + 3-terms ,

[Q
(−)
+ , P¯̂i

] = − 1

2
√

2
Q

(+)
+ Γ¯̂i

Γ+fiσ2 , [Q
(+)
+ , P−] = − 1√

2
Q

(+)
+ fiσ2 ,

[Q
(−)
+ , P ∗

¯̂i
] =

1

2
√

2
Q

(+)
+ Γ+Γ¯̂i

, [Q
(•)
+ , J¯̂i¯̂j

] = −1

2
Q

(•)
+ Γ¯̂i¯̂j

, [Q
(•)
+ , Jîĵ] = −1

2
Q

(•)
+ Γîĵ ,

{Q(+)
+ , Q

(+)
+ } = 2iCΓ−P+P+ ,

{Q(−)
+ , Q

(−)
+ } = 2iCΓ+P−P+ − i

λ√
2
CΓ̂

¯̂i¯̂jiσ2`−P+J¯̂i¯̂j
− i

λ√
2
CΓ̂îĵiσ2`−P+Jîĵ ,

{Q(+)
+ , Q

(−)
+ } = 2iCΓ

¯̂i`−P+P¯̂i
+ iλCΓ̂

¯̂iiσ2`−P+P ∗
¯̂i

. (3.19)

This is regarded as a supersymmetrization of the pp-wave algebra which is the isometry on

the brane worldvolume and the Lorentz symmetry in the transverse space. The existence

of this super-subalgebra is ensured by the conditions (3.11) and (3.12).

3.2 Euclidean branes

We consider the case that (+,−) are contained in the Dirichlet direction. Let us denote

Neumann and Dirichlet directions as Ā = ¯̂i and A = (+,−, î) , respectively. We derive

the NH superalgebra of a Euclidean pp-wave brane as an IW contraction of the pp-wave

superalgebra.

First we consider the bosonic subalgebra. We rescale generators in the pp-wave algebra

as

PA → 1

Ω
PA , J¯̂iĵ

→ 1

Ω
J¯̂iĵ

, P ∗
¯̂i
→ 1

Ω
P ∗

¯̂i
, (3.20)

and then take the limit Ω → 0. Under the contraction, we obtain the NH algebra of a

Euclidean pp-wave brane

[P−, P¯̂i
] = − λ2

√
2
P ∗

¯̂i
, [P−, P ∗

î
] =

1√
2
Pî , [P¯̂i

, J¯̂jk̂
] = η¯̂i¯̂j

Pk̂ , [J¯̂iĵ
, P ∗

k̂
] = ηĵk̂P

∗
¯̂i

,

[P¯̂i
, P ∗

¯̂j
] = − 1√

2
η¯̂i¯̂j

P+ , [Pî, P
∗
ĵ
] = − 1√

2
ηîĵP+ , (3.21)

and (3.7).

To contract the fermionic part of the pp-wave superalgebra, we introduce a matrix

M = `ΓĀ1···Āpρ , `2(−1)[
p+1
2

]ρ2 = 1 (3.22)

and decompose Q(±) as

Q
(•)
± = ±Q

(•)
± M (3.23)
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ρ 1-brane 3-brane 5-brane 7-brane 9-brane

σ1, σ3 (0,2),(2,0) (2,4),(4,2) -

iσ2 (1,3),(3,1) -

1 (1,1) (1,3),(3,1) (5,5)

Table 3: Euclidean pp-wave branes

where p =odd for the chirality of Q(±). We demand that (3.11) and (3.12) are satisfied.

The first condition (3.11) is satisfied when

±(−1)p+[ p+1
2

] = 1 , ρT = ±ρ (3.24)

so that ρT = ρ for p = 1 mod 4 and ρT = −ρ for p = 3 mod 4. It follows that M ′ = −M

and ` =
√
−1. Next, the second condition (3.12) is found to be satisfied when

±(−1)p+n = 1 , ρ =

{
1, iσ2

σ1, σ3
. (3.25)

This restricts the brane configuration as follows: (odd,odd)-branes with ρ = 1 and (even,

even)-branes with ρ = σ1, σ3 for p = 1 mod 4, and (odd,odd)-branes with ρ = iσ2 for

p = 3 mod 4. We summarize the result in table 3. This shows possible 1/2 supersymmetric

subspaces. Among them, (even,even)-branes of p = 1 mod 4 and (odd,odd)-branes of

p = 3 mod 4 are 1/2 BPS D-branes of an open pp-wave superstring [30, 16].

Scaling Q
(•)
± as (3.17) and taking the limit Ω → 0, we obtain the fermionic part of the

NH superalgebra of a Euclidean pp-wave brane

[Q
(−)
± , P¯̂i

] = − 1

2
√

2
Q

(+)
± Γ¯̂i

Γ+fiσ2 , [Q
(−)
+ , Pî] = − 1

2
√

2
Q

(+)
∓ ΓîΓ+fiσ2 ,

[Q
(+)
+ , P−] = − 1√

2
Q

(+)
− fiσ2 , [Q

(−)
+ , P ∗

¯̂i
] =

1

2
√

2
Q

(+)
− Γ+Γ¯̂i

,

[Q
(−)
± , P ∗

î
] =

1

2
√

2
Q

(+)
± Γ+Γî , [Q

(•)
± , J¯̂i¯̂j

] = −1

2
Q

(•)
± Γ¯̂i¯̂j

, [Q
(•)
± , Jîĵ] = −1

2
Q

(•)
± Γîĵ ,

[Q
(•)
+ , J¯̂iĵ

] = −1

2
Q

(•)
− Γ¯̂iĵ

,

{Q(+)
± , Q

(+)
∓ } = 2iCΓ−P+ ,

{Q(−)
± , Q

(−)
∓ } = 2iCΓ+P− − 2i

λ√
2
CΓ̂

¯̂iĵiσ2J¯̂iĵ
,

{Q(−)
+ , Q

(−)
+ } = −i

λ√
2
CΓ̂

¯̂i¯̂jiσ2J¯̂i¯̂j
− i

λ√
2
CΓ̂îĵiσ2Jîĵ ,

{Q(±)
+ , Q

(∓)
+ } = 2iCΓ

¯̂i`∓P¯̂i
+ iλCΓ̂î`∓iσ2P

∗
î

,

{Q(±)
+ , Q

(∓)
− } = 2iCΓî`∓Pî + iλCΓ̂

¯̂i`∓iσ2P
∗
¯̂i

. (3.26)

Summarizing we have obtained the NH superalgebra of a Euclidean pp-wave brane as (3.21),

(3.7) and (3.26). Obviously, this superalgebra can be derived from the NH superalgebra of

an AdS brane (2.9) and (2.18) by an IW contraction.
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We note that the NH superalgebra contains a super-subalgebra generated by P¯̂i
, P ∗

î
,

J¯̂i¯̂j
, Jîĵ and Q

(±)
+

[P¯̂i
, J¯̂j

¯̂
k
] = η¯̂i¯̂j

P¯̂
k
− η¯̂i

¯̂
k
P¯̂j

, [Jîĵ , P
∗
k̂
] = −ηîk̂P

∗
ĵ

+ ηĵk̂P
∗
î

,

[J¯̂i¯̂j
, J¯̂

k
¯̂
l
] = η¯̂j

¯̂
k
J¯̂i

¯̂
l
+ 3-terms , [Jîĵ , Jk̂l̂] = ηĵk̂Jîl̂ + 3-terms

[Q
(−)
+ , P¯̂i

] = − 1

2
√

2
Q

(+)
+ Γ¯̂i

Γ+fiσ2 , [Q
(−)
+ , P ∗

î
] =

1

2
√

2
Q

(+)
+ Γ+Γî ,

[Q
(•)
+ , J¯̂i¯̂j

] = −1

2
Q

(•)
+ Γ¯̂i¯̂j

, [Q
(•)
+ , Jîĵ ] = −1

2
Q

(•)
+ Γîĵ ,

{Q(−)
+ , Q

(−)
+ } = −i

λ√
2
CΓ̂

¯̂i¯̂jiσ2J¯̂i¯̂j
− i

λ√
2
CΓ̂îĵiσ2Jîĵ ,

{Q(±)
+ , Q

(∓)
+ } = 2iCΓ

¯̂i`∓P¯̂i
+ iλCΓ̂î`∓iσ2P

∗
î

(3.27)

which is regarded as a supersymmetrization of the Poincaré algebra generated by {P¯̂i
, J¯̂i¯̂j

}
which is the isometry on the brane worldvolume and the Lorentz symmetry in the transverse

space generated by {P ∗
î
, Jîĵ}. The conditions (3.11) and (3.12) ensure the existence of this

super-subalgebra.

4. Branes in AdS5×S5

A D-brane action [36] (see [37] for flat D-branes) is composed of the Dirac-Born-Infeld

(DBI) action and the WZ action

S = SDBI + SWZ . (4.1)

The DBI action is given, suppressing the dilaton and axion factors here, as

SDBI = T

∫

Σ
LDBI , LDBI =

√
s det(g + F) dp+1ξ (4.2)

where F = F − B and F = dA, and s = −1 for a Lorentzian brane while s = 1 for a

Euclidean brane. gij is given by gij = LA
i LB

j ηAB with LA
i = ∂iZ

M̂LA
M̂

. T is the tension

of the brane. B is the pullback of the NS-NS two-form and A is the gauge field on the

worldvolume. For an F-string, the DBI action is replaced by the Nambu-Goto (NG) action

SNG = T

∫

Σ
LNG , LNG =

√
s det g d2ξ . (4.3)

The WZ action2 is characterized by supersymmetric closed (p + 2)-form hp+2

SWZ = T

∫

Σ
LWZ , hp+2 = dLWZ =

∑

n=0

1

n!
h(p+2−2n)Fn . (4.4)

The closedness of hp+2

0 = dhp+2 =
∑

n=0

1

n!

(
dh(p+2−2n) − h(p−2n)dF

)
Fn (4.5)

implies

dh(p+2−2n) − h(p−2n)dF = 0 . (4.6)

2See [38] for the Roiban-Siegel formulation [39] of AdS D-branes.
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4.1 CE-cohomology classification

In [20], it is shown that the Wess-Zumino (WZ) terms of p-branes in flat spacetime can

be classified as non-trivial elements of the Chevalley-Eilenberg (CE) cohomology [21]. Let

Cp(g, R) be the vector space of p-cochains of a Lie algebra g. A p-cochain is a linear

antisymmetric map: g × · · · × g 7→ R and a coboundary operator δ with δ2 = 0 acts as

Cp(g, R) 7→ Cp+1(g, R). The CE cohomology group Hp(g, R) is defined by Zp/Bp where

Zp and Bp are the vector spaces of p-cocycles c ∈ Zp satisfying δc = 0 and p-coboundaries

c ∈ Bp satisfying c = δc′ with c′ ∈ Cp−1(g, R), respectively. In the present context, this

is viewed as the de Rham cohomology group Ep(G, R) for left-invariant (LI) p-forms on

the supergroup G =“super-Poincaré”/“Lorentz”, for which a non-trivial element of the

cohomology is a closed LI p-form modulo exact LI p-forms on G. This is generalized to D-

branes in [22, 23] by introducing an additional two form which corresponds to the modified

field strength of background B field.

Here we examine WZ terms of AdS branes by using the CE cohomology on g of

the supergroup G =PSU(2,2|4)/(SO(4,1)×SO(5)), i.e. “super-AdS5×S5”/“Lorentz”. We

show that except for the p = 1 case hp+2 can be obtained as a Lorentz invariant non-

trivial element of the CE-cohomology on the free differential algebra which is the MC

equations (2.6) corresponding to the super-AdS5×S5 algebra (2.1) equipped with

dF = −iLAL̄ΓAσL (4.7)

where σ is σ3 for D-branes while −σ1 for F1- and NS5-branes.

In order not to introduce an additional dimensionful parameter we assign a dimension

to Cartan one-forms as follows

LA Lα LAB λ F hp+2 h(k)

dim 1 1/2 0 −1 2 p + 1 k − 1
(4.8)

where dim hp+2 = p + 1 because dim hp+2 = dimLp
WZ = dimLp

BI = p + 1 for structureless

fundamental branes.

Suppose that h(k) is of the form (LA)n(Lα)mλl, then n, m and l must satisfy

n +
1

2
m − l = k − 1, n + m = k, (4.9)

because h(k) is a Lorentz invariant k-form of dimension k − 1. We require that εa1···a5 and

εa′
1···a

′
5

are accompanied with λ; λεa1···a5 and λεa′
1···a

′
5
, because εa1···a5 and εa′

1···a
′
5

disappear

in the flat limit λ → 0. Requiring l ≥ 0 because otherwise h(k) diverges in the flat limit.

This implies l = −1
2m + 1 ≤ 1 and so we consider l = 0, 1. Since (4.9) is satisfied for

(m,n) = (2, k − 2), (0, k) for l = 0, 1, respectively, we find that h(k), k = 1, 3, 5, . . ., has
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the following form

h(1) = 0, (4.10)

h(3) = c
(3)
0 LaL̄Γa%

(3)
0 L + c

(3)
1 La′

L̄Γa′%
(3)
1 L, (4.11)

h(5) = c
(5)
0 La1La2La3L̄Γa1a2a3%

(5)
0 L + · · · + c

(5)
3 La′

1La′
2La′

3L̄Γa′
1a′

2a′
3
%
(5)
3 L

+b0λεa1···a5L
a1 · · ·La5 + b5λεa′

1···a
′
5
La′

1 · · ·La′
5 , (4.12)

h(7) = c
(7)
0 La1 · · ·La5L̄Γa1···a5%

(7)
0 L + · · · + c

(7)
5 La′

1 · · ·La′
5L̄Γa′

1···a
′
5
%
(7)
5 L, (4.13)

h(9) = c
(9)
0 La1 · · ·La7L̄Γa1···a7%

(9)
0 L + · · · + c

(9)
7 La′

1 · · ·La′
7L̄Γa′

1···a
′
7
%
(9)
7 L, (4.14)

where c
(k)
i and bi are constants determined below. %

(k)
i are 2×2 matrices satisfying %(k)T =

%(k) for k = 3, 7 while %(k)T = −%(k) for k = 5, 9, because CΓA1···AN is symmetric for

N = 1, 2 mod 4 and anti-symmetric otherwise.

It is straightforward to solve (4.6) to determine coefficients and %
(k)
i . We find

h(1) = 0, (4.15)

h(3) = cLAL̄ΓA%L, (4.16)

h(5) =
c

3!

[
LA1LA2LA3L̄ΓA1A2A3iσ2L+

i

5
λ
(
εa1···a5L

a1 · · ·La5− εa′
1···a

′
5
La′

1 · · ·La′
5
)]

, (4.17)

h(7) =
c

5!
LA1 · · ·LA5L̄ΓA1···A5%L, (4.18)

h(9) =
c

7!
LA1 · · ·LA7L̄ΓA1···A7iσ2L . (4.19)

In appendix B, c = c
(3)
0 is determined by the κ-invariance [36] of the total action S as

c = i and 1 for Lorentzian and Euclidean branes respectively: c =
√

s. % is σ1(σ3) for

σ = σ3(−σ1) respectively. The closedness (4.6) is ensured by the Fierz identities

(CΓA)(αβ(CΓA%)γδ) = 0 ,

(CΓC)(αβ(CΓABC iσ2)γδ) + 2(CΓ[A%)(αβ(CΓB]σ)γδ) = 0 ,

(CΓB)(αβ(CΓA1···A4B%)γδ) + 4(CΓ[A1A2A3iσ2)(αβ(CΓA4]σ)γδ) = 0 ,

(CΓB)(αβ(CΓA1···A6Biσ2)γδ) + 6(CΓ[A1···A5%)(αβ(CΓA6]σ)γδ) = 0 . (4.20)

In summary, closed (p + 2)-forms hp+2 are composed in terms of h(k) found above as

in (4.4). The actions S for F1- and D3-branes coincide with those obtained in [40] and [41],

respectively.

We show that hp+2 is a non-trivial element of the cohomology except for h3. If hp+2

is exact, there exists bp+1 such as hp+2 = dbp+1. Since

h3 = db2 , b2 = −cλ−1L̄I%iσ2L (4.21)

h3 is a trivial element of the cohomology [24, 25]. Next we show that hp+2 with p = 3, 5, 7

is not exact. Let us examine a term of the form 1
(p−1

2
)!
h(3)F p−1

2 contained in hp+2. We note
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that F can be written as3

F = icλ−1L̄Iσiσ2L (4.22)

up to an exact form, and that there does not exist a one-form supercurrent f such that

F = df . So bp+1 must contain a term of the form L̄I%iσ2LF
p−1
2 . Differentiating it, we

have L̄I%iσ2L LAL̄ΓAσLF p−3
2 in addition to 1

(p−1
2

)!
h(3)F p−1

2 . For hp+2 to be exact, this

term must be canceled by the differential of a term which is a (p+1)-form with p− 1 Lα’s.

From the MC equation (2.6), we see that there does not exist such a term. Thus hp+2 with

p = 3, 5, 7 obtained above are non-trivial elements of the cohomology.

4.2 (p + 1)-dimensional form of the WZ term

In this subsection, we give the (p+1)-dimensional form of the WZ term hp+2. We follow [40,

41] in which the (p + 1)-dimensional form of the WZ term of F1- and D3-branes are given.

The LI Cartan one-forms satisfy the following differential equations

∂tL̂
A = 2iθ̄ΓAL̂ , (4.23)

∂tL̂
α = dθ +

λ

2
L̂AΓ̂Aiσ2θ +

1

4
L̂ABΓABθ , (4.24)

∂tL̂
AB = −2iλθ̄Γ̂ABiσ2L̂ (4.25)

where a “hat” on a supercurrent implies that θ is rescaled as θ → tθ. First we note that

∂tdF̂ = −∂tdB̂ = −2id(L̂A ˆ̄LΓAσθ) . (4.26)

This is solved by

B = 2i

∫ 1

0
dt L̂A ˆ̄LΓAσθ + B(2) . (4.27)

where B(2) is a bosonic 2-form satisfying dB(2) = 0. Thus we obtain

F = F − 2i

∫ 1

0
dt L̂A ˆ̄LΓAσθ − B(2) , (4.28)

∂tF̂ = −2i(L̂A ˆ̄LΓAσθ) . (4.29)

For D-brane actions, we choose B(2) = 0.

By using (4.23)-(4.25) and (4.29), one sees that the closed (p + 1)-form hp+2 satisfies

∂tĥp+2 = dbp+1 , (4.30)

where

bp+1 = [C ∧ eF̂ ]p+1 , C =
⊕

`=even

C(`) ,

C(2n) =
2
√

s

(2n − 1)!
L̂A1 · · · L̂A2n−1 ˆ̄LΓA1···A2n−1(σ)niσ2θ . (4.31)

3This implies that h2 = h(2) +h(0)F with h(0) = iĉλ and h(2) = −ĉL̄Iσiσ2L can be a nontrivial element

of the cohomology. It is interesting to examine the 0-brane action with the WZ term h2.
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It follows that

∫

B
hp+2 =

∫

Σ
LWZ =

∫

Σ

[∫ 1

0
dt bp+1 + C(p+1)

]
(4.32)

where ∂B = Σ, and C(p+1) is a bosonic (p + 1)-form satisfying

hp+2|bosonic = dC(p+1) . (4.33)

Letting p = 1 and σ = −σ1, we reproduce the WZ term of an F-string.

5. Non-relativistic branes in AdS5×S5

In [15], the non-relativistic F-string in AdS5×S5 is examined. There the leading contribu-

tions of the NG and the WZ parts in the non-relativistic limit cancel each other, and the

next-to-leading terms contribute to the non-relativistic F-string action. Thus, in order to

extract non-relativistic brane actions, we need to know the next-to-leading order terms in

the limit Ω → 0. Let us consider the scaling

XA → ΩXA , θ− → Ωθ− , (5.1)

T = Ω−2TNR , F = ΩF1 . (5.2)

(5.1) is consistent with the scaling (2.8) and (2.17). It is straightforward to see that by

substituting (5.1) into the concrete expression of the supercurrents given in appendix A.1,

LA and L are expanded as

LĀ =
∑

n=0

Ω2nLĀ
2n , LA =

∑

n=0

Ω2n+1L
A
2n+1 ,

L+ =
∑

n=0

Ω2nL+2n , L− =
∑

n=0

Ω2n+1L−2n+1 . (5.3)

Expand LAB as

LĀB̄ =
∑

n=0

Ω2nLĀB̄
2n , LAB =

∑

n=0

Ω2nL
AB
2n , LĀB =

∑

n=0

Ω2n+1L
ĀB
2n+1 , (5.4)

and substitute (5.3) and (5.4) into the MC equation (2.6) for the super-AdS5×S5 alge-

bra, then the LI Cartan one-forms {LĀ
0 ,L

A
1 , L+0, L−1,L

ĀB̄
0 ,L

AB
0 ,L

ĀB
1 } form the MC equa-

tions (2.20)-(2.28) for the NH superalgebra. 4

We consider the non-relativistic limit of the AdS branes obtained in the previous

section. In the following subsections, we will show that when we introduce

M =
√
−sΓĀ0···Āp ⊗ ρ (5.5)

4As will be seen below, the non-relativistic actions are composed of {LĀ
0 , LĀ

2 ,L
A
1 , L+0, L+2, L−1}. So

these actions are not invariant under the NH superalgebra, but under an expanded superalgebra [24, 43]

(see also [44, 45]) which is a generalization of the IW contraction [4], generated by generators dual to

{LĀ
m,L

A
m, L±m, LĀB̄

m , L
AB
m , L

ĀB
m | 0 ≤ m ≤ 2}.
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with ρ = σ1(iσ2) for Dp-branes with p = 1(3) mod 4, respectively, and with ρ = σ3 for F1

and NS5, AdS p-brane actions admit expansion

S = TNR

∫

Σ

[
Ω−2(Ldiv

{ NG
DBI

+ Ldiv
WZ) + Lfin

{ NG
DBI

+ Lfin
WZ + O(Ω2)

]
. (5.6)

For the consistent non-relativistic limit Ω → 0, the divergent term
∫

(Ldiv

{ NG
DBI

+Ldiv
WZ) should

cancel out. First, we show that

dLdiv

{ NG
DBI

+ hdiv
p+2 = 0 . (5.7)

This implies that the divergent terms with θ cancel out, since hdiv
p+2 is composed of only

terms with θ. Next, we consider the bosonic terms of Ldiv

{ NG
DBI

+ Ldiv
WZ

1

(p + 1)!
εĀ0···Āp

eĀ0
0 · · · eĀp

0 + C
(p+1)
0 (5.8)

where C
(p+1)
0 is the leading contribution of C(p+1) in (4.32). This is deleted by choosing

C
(p+1)
0 = − 1

(p+1)!εĀ0···Āp
eĀ0
0 · · · eĀp

0 . It is easy to see that dC
(p+1)
0 = 0 by using the expres-

sions given in appendix A.1. Thus the bosonic divergent terms also cancel out. As a result,

we derive the non-relativistic brane action

SNR = TNR

∫

Σ
LNR , LNR = Lfin

{ NG
DBI

+ Lfin
WZ (5.9)

which is drastically simplified by gauge fixing the κ-symmetry by θ+ = 0. We examine

each AdS branes in turn below.

5.1 F-string

First, we consider an F-string. The 3-form h3 is given in (4.16) with % = σ3. The gluing

matrix M is

M =
√
−sΓĀ0Ā1 ⊗ ρ , ρ = σ1, σ3, 1. (5.10)

Since

M ′ΓĀ% = ΓĀM% = ±ΓĀ%M , ρ =

{
σ3, 1

σ1
, (5.11)

h3 is expanded as

Th3 = TNRΩ−2hdiv
3 + TNRhfin

3 + O(Ω2) , (5.12)

hdiv
3 =

√
sLĀ

0 L̄+0ΓĀ%L+0 , (5.13)

hfin
3 =

√
s
[
LĀ

0 L̄−1ΓĀ%L−1 + LĀ
2 L̄+0ΓĀ%L+0

+2LĀ
0 L̄+0ΓĀ%L+2 + 2L

A
1 L̄+0ΓA%L−1

]
, (5.14)
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for ρ = σ3, 1, while h3 is of order Ω for ρ = σ1. On the other hand, the NG part is expanded

as

TLNG = TNRΩ−2Ldiv
NG + TNRLfin

NG + O(Ω2) , (5.15)

Ldiv
NG =

√
s det g0d

2ξ = det((LĀ
0 )i)d

2ξ =
1

2
εĀB̄(LĀ

0 )(LB̄
0 ) , (5.16)

Lfin
NG =

1

2

√
s det g0 gij

0 (g2)ij d2ξ , (5.17)

with εĀ0Ā1
= 1 and

(g0)ij = (LĀ
0 )i(L

B̄
0 )jηĀB̄ , (5.18)

(g2)ij = 2(LĀ
0 )(i(L

B̄
2 )j)ηĀB̄ + (L

A
1 )i(L

B
1 )jηAB . (5.19)

The leading contribution satisfies [15]

dLdiv
NG = εĀB̄iL̄+0Γ

ĀL+0L
B̄
0 = −√

sLĀ
0 L̄+0ΓĀρL+0 (5.20)

where we have used (2.20) and L+ = ML+. This cancels out hdiv
3 in (5.13) only when

% = ρ

dLdiv
NG + hdiv

3 = 0 . (5.21)

This implies that θ-dependent terms in Ldiv
NG + Ldiv

WZ cancel each other. The bosonic term

of Ldiv
NG in (5.16), 1

2εĀB̄eĀ
0 eB̄

0 , is deleted by choosing C
(2)
0 in (4.32) as

C
(2)
0 = −1

2
εĀB̄eĀ

0 eB̄
0 (5.22)

which satisfies dC
(2)
0 = 0. Thus, the gluing matrix (5.10) with ρ = σ3 leads to the consistent

non-relativistic limit of the F-string. The non-relativistic F-string action is (5.9) with (5.17)

and

Lfin
WZ =

∫ 1

0
dt 2

√
s
[
L̂Ā

0 ( ˆ̄L−1ΓĀ%θ− + ˆ̄L+2ΓĀ%θ+)

+L̂
A
1 ( ˆ̄L−1ΓA%θ+ + ˆ̄L+0ΓA%θ−) + L̂Ā

2
ˆ̄L+0ΓĀ%θ+

]
. (5.23)

We fix the κ-gauge symmetry of the action by θ+ = 0 (see appendix B). Then we have

LĀ
0 = eĀ

0 , LĀ
2 = eĀ

2 + iθ̄−ΓĀDθ− , L
A
1 = e

A
1 ,

L−1 = Dθ− , Dθ− ≡ dθ− +
λ

2
eĀ
0 Γ̂Āiσ2θ− +

1

4
ωĀB̄

0 ΓĀB̄θ− ,

(g0)ij = (eĀ
0 )i(e

B̄
0 )jηĀB̄ . (5.24)

In the static gauge, xĀ = ξi, (eĀ
0 )i is the vielbein on the AdS brane worldvolume. Thanks

to the κ-gauge fixing, we can perform the t-integration in (5.23) easily. Lfin
NG is reduced to

Lfin
NG = d2ξ

√
s det g0

[
gij
0 (eĀ

0 )i(e
B̄
2 )jηĀB̄ +

1

2
gij
0 (e

A
1 )i(e

B
1 )jηĀB̄ + igij

0 θ̄−γiDjθ−

]
(5.25)
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where γi = (eĀ
0 )iΓĀ. By parameterizing the group manifold as in appendix A.1, it is

rewritten as

Lfin
NG = d2ξ

√
s det g0

[1

2
gij
0 ∂iy

A∂jy
BηAB +

λ2

2
(my2 − ny′

2
) + iθ̄−γiDiθ−

]
(5.26)

for an (m,n)-brane with (m,n)=(2, 0), (0, 2). On the other hand, Lfin
WZ is reduced to

Lfin
WZ =

√
seĀ

0 Dθ̄−ΓĀ%θ− = d2ξ
√

s det g0

[
− iDiθ̄−γiθ−

]
(5.27)

where we have used θ− = −Mθ− in the second equality. Combining these results, we

obtain the non-relativistic action

SF1
NR = TNR

∫
d2ξ

√
s det g0

[1

2
gij
0 ∂iy

A∂jyA +
λ2

2
(my2 − ny′

2
) + 2iθ̄−γiDiθ−

]
. (5.28)

This is a free field action of scalars and fermions propagating on (2,0)- or (0,2)-brane

worldvolume. For the case of a Lorentzian (2,0)-brane, this reproduces the non-relativistic

AdS2 brane action obtained in [15].

5.2 D-string

Secondly, we consider a D-string, for which % = σ1 and σ = σ3. The gluing matrix M is

given in (5.10). Since

M ′ΓĀ% = ΓĀM% = ±ΓĀ%M , ρ =

{
σ1, 1

σ3
, (5.29)

h3 is expanded as (5.12) with % = σ1 for ρ = σ1, 1, while h3 is of order Ω for ρ = σ3. We

note that for ρ = σ1, F is of order Ω

F = ΩF1 + O(Ω3) , (5.30)

F1 = F1 − 2i

∫ 1

0
dt

[
L̂Ā

0 ( ˆ̄L+0ΓĀσθ− + ˆ̄L−1ΓĀσθ+) + L̂
A
1

ˆ̄L+0ΓAσθ+

]
(5.31)

since

M ′ΓĀσ = −ΓĀσM . (5.32)

So, the DBI part is expanded as

TLDBI = TNRΩ−2Ldiv
DBI + TNRLfin

DBI + O(Ω4) , (5.33)

Ldiv
DBI =

√
s det g0 d2ξ , (5.34)

Lfin
DBI =

1

2

√
s det g0

(
gij
0 (g2)ij −

1

2
gik
0 (F1)kjg

jl
0 (F1)li

)
d2ξ (5.35)

where g0, g2 and F1 are given in (5.18), (5.19) and (5.31), respectively. For ρ = 1, σ3, F
is of order Ω0. As was done for the F-string case, the hdiv

3 in (5.13) with % = σ1 and the

leading contribution of the fermionic part of the DBI action cancel each other. By choosing
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C
(2)
0 = −1

2εĀB̄eĀ
0 eB̄

0 , the bosonic terms of the divergent part cancel out. Thus, the gluing

matrix with ρ = σ1 leads to the consistent non-relativistic limit of the D-string.

The non-relativistic D-string action is given by (5.9) with (5.35) and

Lfin
WZ =

∫ 1

0
dt 2

√
s
[
L̂Ā

0 ( ˆ̄L−1ΓĀ%θ− + ˆ̄L+2ΓĀ%θ+)

+L̂
A
1 ( ˆ̄L−1ΓA%θ+ + ˆ̄L+0ΓA%θ−) + L̂Ā

2
ˆ̄L+0ΓĀ%θ+

]
. (5.36)

Let us gauge fix the κ-gauge symmetry by choosing θ+ = 0. This makes it easy to

perform the t-integration in Lfin
WZ. The t-integration in F1 in (5.31) disappears and we have

F1 = F1. In the similar way in the F-string case, we obtain the non-relativistic D-string

action

SD1
NR = TNR

∫
d2ξ

√
s det g0

[1

2
gij
0 ∂iy

A∂jyA +
λ2

2
(my2 − ny′

2
)

+2iθ̄−γiDiθ− +
1

4
(F1)ij(F1)

ij
]

. (5.37)

This is a free field action of scalars, fermions and a gauge field propagating on (2,0)- or

(0,2)-brane worldvolume.

5.3 D3-brane

Thirdly, we consider a D3-brane for which % = σ1 and σ = σ3. The gluing matrix is

M =
√
−sΓĀ0···Ā3 ⊗ iσ2 . (5.38)

Since

M ′ΓB̄1···B̄3
iσ2 = ΓB̄1···B̄3

iσ2M , M ′ΓĀ% = −ΓĀ%M , M ′ΓĀσ = −ΓĀσM , (5.39)

F and h3 are of order Ω as in (5.30) and the WZ part is expanded as

Th5 = TNRΩ−2hdiv
5 + TNRhfin

5 + O(Ω4) , (5.40)

hdiv
5 =

√
s

3!
LĀ1

0 LĀ2
0 LĀ3

0 L̄+0ΓĀ1···Ā3
iσ2L+0 , (5.41)

hfin
5 = h

(5)
2 + h

(3)
1 F1 (5.42)

with

h
(5)
2 =

√
s

3!

[
L

Ā1
0 L

Ā2
0 L

Ā3
0 L̄−1ΓĀ1···Ā3

σ1L−1 + 3LĀ1
0 L

Ā2
0 L

Ā3
2 L̄+0ΓĀ1···Ā3

σ1L+0

+2LĀ1
0 LĀ2

0 LĀ3
0 L̄+0ΓĀ1···Ā3

σ1L+2 + 6LĀ1
0 LĀ2

0 L
A3
1 L̄+0ΓĀ1···Ā2A3

σ1L−1

+6LĀ1
0 L

A2
1 L

A3
1 L̄+0ΓĀ1A2A3

σ1L+0

+4iλ(δ(3,1)εā1ā2ā3a4a5
Lā1

0 Lā2
0 Lā3

0 L
a4
1 L

a5
1

−δ(1,3)εā′
1ā′

2ā′
3a′

4a′
5
L

ā′
1

0 L
ā′
2

0 L
ā′
3

0 L
a′
4

1 L
a′
5

1 )
]
, (5.43)

h
(3)
1 =

√
s
[
2LĀ

0 L̄+0ΓĀ%L−1 + L
A
1 L̄+0ΓA%L+0

]
, (5.44)
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where δ(m,n) = 1 for an (m,n)-brane and δ(m,n) = 0 for others. This implies that the

bosonic 4-form C(4) is expanded as

TdC(4) = TNRΩ−2dC
(4)
0 + TNRdC

(4)
2 + O(Ω4) , (5.45)

dC
(4)
0 = 0 , (5.46)

dC
(4)
2 =

√
s

3!
4iλ

(
δ(3,1)εā1ā2ā3a4a5

eā1
0 eā2

0 eā3
0 e

a4
1 e

a5
1 − δ(1,3)εā′

1ā′
2ā′

3a′
4a′

5
e
ā′
1

0 e
ā′
2

0 e
ā′
3

0 e
a′
4

1 e
a′
5

1

)
.(5.47)

On the other hand, as F is of order Ω, the DBI part is expanded as in (5.33). As was done

in the p = 1 case, we find

d(
√

s det g0 d4ξ) = d(det((LĀ
0 )i)d

4ξ) = −
√

s

3!
L

Ā1
0 · · ·LĀ3

0 L̄+0ΓĀ1···Ā3
iσ2L+0 . (5.48)

Thus the fermionic part contained in Ldiv
WZ and Ldiv

DBI cancel each other. In addition, the

bosonic terms are deleted by choosing

C
(4)
0 = − 1

4!
εĀ0···Ā3

eĀ0
0 · · · eĀ3

0 (5.49)

which satisfies dC
(4)
0 = 0. Thus the matrix M leads to the consistent non-relativistic limit

of the AdS D3-brane.

The non-relativistic D3-brane action is given as (5.9) with (5.35) and

LD3
WZ =

∫ 1

0
dt

[
C(4)

2 + C(2)
1 F̂1

]
+ C

(4)
2 (5.50)

with

C(4)
2 = 2c

[ 1

3!
L̂

Ā1
0 L̂

Ā2
0 L̂

Ā3
0 ( ˆ̄L−1ΓĀ1Ā2Ā3

iσ2θ− + ˆ̄L+2ΓĀ1Ā2Ā3
iσ2θ+)

+
1

2
L̂Ā1

0 L̂Ā2
0 L̂

A3
1 ( ˆ̄L−1ΓĀ1Ā2A3

iσ2θ+ + ˆ̄L+0ΓĀ1Ā2A3
iσ2θ−)

+L̂Ā1
0 L̂Ā2

0 L̂Ā3
2

ˆ̄L+0ΓĀ1Ā2Ā3
iσ2θ+ + L̂Ā1

0 L̂
A2
1 L̂

A3
1

ˆ̄L+0ΓĀ1A2A3
iσ2θ+

]
,

C(2)
1 = 2c

(
L̂Ā

0 ( ˆ̄L+0ΓĀ%θ− + ˆ̄L−1ΓĀ%θ+) + L̂
A
1

ˆ̄L+0ΓA%θ+

)
. (5.51)

The bosonic contribution C
(4)
2 is

∫

Σ
C

(4)
2 = 4i

√
sλ

∫

Σ

[
δ(3,1)volΣ3εabdyayb − δ(1,3)volΣ′

3
εa′b′dya′

yb′
]

,

= 4i
√

sλ

∫
d4ξ

√
s det g0

[
δ(3,1)εab∂ξ′y

ayb − δ(1,3)εa′b′∂ξy
a′

yb′
]

(5.52)

where Σm × Σ′
n is the (m,n)-brane worldvolume, and volΣ`

= 1
`!εā1···ā`

eā1
0 · · · eā`

0 . ξ(ξ′)

represents the worldvolume direction in AdS5(S
5 respectively). By fixing the κ-symmetry

as θ+ = 0, the non-relativistic action is simplified as

SD3
NR = TNR

∫
d4ξ

√
s det g0

[1

2
gij
0 ∂iy

A∂jy
BηAB +

λ2

2
(my2 − ny′

2
)

+2iθ̄−γiDjθ− +
1

4
(F1)ij(F1)

ij
]

+ TNR

∫

Σ
C

(4)
2 . (5.53)
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5.4 D5-brane

Fourthly, we consider a D5-brane for which % = σ1 and σ = σ3. The gluing matrix is

M =
√
−sΓĀ0···Ā5 ⊗ ρ , ρ = σ1, σ3, 1 . (5.54)

Since

M ′ΓB̄1···B̄5
% = ±ΓB̄1···B̄5

%M , M ′ΓĀ% = ±ΓĀ%M , ρ =

{
σ1, 1

σ3
(5.55)

M ′ΓB̄1···B̄3
iσ2 = ±ΓB̄1···B̄5

iσ2M , ρ =

{
1

σ1, σ3
(5.56)

M ′ΓĀσ = ±ΓĀσM , ρ =

{
σ3, 1

σ1
, (5.57)

F is of order Ω only for ρ = σ1. In this case the WZ part is expanded as

Th7 = TNRΩ−2hdiv
7 + TNRhfin

7 + O(Ω4) , (5.58)

hdiv
7 =

√
s

5!
LĀ1

0 · · ·LĀ5
0 L̄+0ΓĀ1···Ā5

%L+0 , (5.59)

hfin
7 = h

(7)
2 + h

(5)
1 F1 +

1

2
h

(3)
0 F2

1 (5.60)

and the DBI part is expanded as (5.33). We find that h
(7)
2 , h

(5)
1 and h

(3)
0 are given as

h
(7)
2 =

√
s

5!

[
L

Ā1
0 · · ·LĀ5

0 L̄−1ΓĀ1···Ā5
%L−1 + 5LĀ1

0 · · ·LĀ4
0 L

Ā5
2 L̄+0ΓĀ1···Ā5

%L+0

+2LĀ1
0 · · ·LĀ5

0 L̄+0ΓĀ1···Ā5
%L+2 + 10LĀ1

0 · · ·LĀ4
0 L

A5
1 L̄+0ΓĀ1···Ā4A5

%L−1

+20LĀ1
0 · · ·LĀ3

0 L
A4
1 L

A5
1 L̄+0ΓĀ1···Ā3A4A5

%L+0

]
, (5.61)

h
(5)
1 =

√
s

3!

[
2LĀ1

0 LĀ2
0 LĀ3

0 L̄+0ΓĀ1Ā2Ā3
iσ2L−1 + 3LĀ1

0 LĀ2
0 L

A3
1 L̄+0ΓĀ1Ā2A3

iσ2L+0

+δ(4,2)iλεā1···ā4a5
Lā1

0 · · ·Lā4
0 L

a5
1 − δ(2,4)iλεā′

1···ā
′
4a′

5
L

ā′
1

0 · · ·Lā′
4

0 L
a′
5

1

]
, (5.62)

h
(3)
0 =

√
sLĀ

0 L̄+0ΓĀ%L+0 . (5.63)

This implies that the bosonic 6-form C(6) is expanded as

TdC(6) = TNRΩ−2dC
(6)
0 + TNRdC

(6)
2 + O(Ω4) , (5.64)

dC
(6)
0 = 0 , (5.65)

dC
(6)
2 =

i
√

s

3!
λ
[
δ(4,2)εā1···ā4a5

eā1
0 · · · eā4

0 e
a5
1 − δ(2,4)εā′

1···ā
′
4a′

5
e
ā′
1

0 · · · eā′
4

0 e
a′
5

1

]
F1 . (5.66)

Because

d(
√

s det g0 d6ξ) = −i

√
s

5!
LĀ1

0 · · ·LĀ5
0 L̄+0ΓĀ1···Ā5

%L+0 , (5.67)
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hdiv
7 in (5.59) and the fermionic term in the DBI part Ldiv

DBI cancel each other. As before,

one sees that the bosonic terms are also deleted by choosing C
(6)
0 = − 1

6!εĀ0···Ā5
eĀ0
0 · · · eĀ5

0 .

Summarizing we have shown that the matrix M with % = σ1 leads to the consistent non-

relativistic limit of the AdS D5-brane.5

The non-relativistic D5-brane action is given as (5.9) with (5.35) and

LD5
WZ =

∫ 1

0
dt

[
C(6)

2 + C(4)
1 F̂1 +

1

2
C(2)

0 F̂2
1

]
+ C

(6)
2 (5.68)

with

C(6)
2 = 2c

[ 1

5!
L̂

Ā1
0 · · · L̂Ā5

0 ( ˆ̄L−1ΓĀ1···Ā5
%θ− + ˆ̄L+2ΓĀ1···Ā5

%θ+)

+
1

4!
L̂Ā1

0 · · · L̂Ā4
0 L̂

A5
1 ( ˆ̄L−1ΓĀ1···Ā4A5

%θ+ + ˆ̄L+0ΓĀ1···Ā4A5
%θ−)

+
1

4!
L̂

Ā1
0 · · · L̂Ā4

0 L̂
Ā5
2

ˆ̄L+0ΓĀ1···Ā5
%θ+

+
1

3!
L̂

Ā1
0 L̂

Ā2
0 L̂

Ā3
0 L̂

A4
1 L̂

A5
1

ˆ̄L+0ΓĀ1Ā2Ā3A4A5
%θ+

]
,

C(4)
1 = 2c

[ 1

3!
L̂Ā1

0 L̂Ā2
0 L̂Ā3

0 ( ˆ̄L+0ΓĀ1Ā2Ā3
iσ2θ− + ˆ̄L−1ΓĀ1Ā2Ā3

iσ2θ+)

+
1

2
L̂

Ā1
0 L̂

Ā2
0 L̂

A3
1

ˆ̄L+0ΓĀ1Ā2A3
iσ2θ+

]
,

C(2)
0 = 2c

[
L̂Ā

0
ˆ̄L+0ΓĀ%θ+

]
. (5.69)

The bosonic contribution is
∫

Σ
C

(6)
2 = 4i

√
sλ

∫

Σ

[
δ(4,2)volΣ4yF1 − δ(2,4)volΣ′

4
y′F1

]

= −4i
√

sλ

∫
d6ξ

√
s det g0

[
δ(4,2)∂i′y(∗A1)

i′ − δ(2,4)∂iy(∗A1)
i
]

(5.70)

where y(y′) is the transverse direction in AdS5(S
5), and i(i′) represents the worldvolume

directions in AdS5(S
5). ∗ means the Hodge dual in Σ2 or Σ′

2. The κ-gauge symmetry is

fixed by θ+ = 0, and the non-relativistic action is simplified as

SD5
NR = TNR

∫
d6ξ

√
s det g0

[1

2
gij
0 ∂iy

A∂jyA +
λ2

2
(my2 − ny′

2
)

+2iθ̄−γiDiθ− +
1

4
(F1)ij(F1)

ij
]

+ TNR

∫

Σ
C

(6)
2 . (5.71)

5.5 D7-brane

Finally, let us consider a D7-brane for which % = σ1 and σ = σ3. By using the gluing

matrix

M =
√
−sΓĀ0···Ā6 ⊗ iσ2 (5.72)

5It is now obvious that for NS5-brane with % = σ3 and σ = −σ1 the gluing matrix (5.54) with ρ = σ3

leads to the consistent non-relativistic NS5-brane.
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one derives

M ′ΓB̄1···B̄7
iσ2 = ΓB̄1···B̄7

iσ2M , M ′ΓB̄1···B̄5
% = −ΓB̄1···B̄5

%M ,

M ′ΓB̄1···B̄3
iσ2 = ΓB̄1···B̄3

iσ2M , M ′ΓĀ% = −ΓĀ%M ,

M ′ΓĀσ = −ΓĀσM . (5.73)

These imply that F is of order Ω and the WZ part is expanded as

Th9 = TNRΩ−2hdiv
9 + TNRhfin

9 + O(Ω4) , (5.74)

hdiv
9 =

√
s

7!
L

Ā1
0 · · ·LĀ7

0 L̄+0ΓĀ1···Ā7
iσ2L+0 , (5.75)

hfin
9 = h

(9)
2 + h

(7)
1 F1 +

1

2
h

(5)
0 F2

1 , (5.76)

and the DBI is as in (5.33). It is straightforward to see that h
(9)
2 , h

(7)
1 and h

(5)
0 are given as

h
(9)
2 =

√
s

7!

[
LĀ1

0 · · ·LĀ7
0 L̄−1ΓĀ1···Ā7

iσ2L−1 + 7LĀ1
0 · · ·LĀ6

0 LĀ7
2 L̄+0ΓĀ1···Ā7

iσ2L+0

+2LĀ1
0 · · ·LĀ7

0 L̄+0ΓĀ1···Ā7
iσ2L+2 + 14LĀ1

0 · · ·LĀ6
0 L

A7
1 L̄+0ΓĀ1···Ā6A7

iσ2L−1

+42LĀ1
0 · · ·LĀ5

0 L
A6
1 L

A7
1 L̄+0ΓĀ1···Ā5A6A7

iσ2L+0

]
, (5.77)

h
(7)
1 =

√
s

5!

[
2LĀ1

0 · · ·LĀ5
0 L̄+0ΓĀ1···Ā5

%L−1 + 5LĀ1
0 · · ·LĀ4

0 L
A5
1 L̄+0ΓĀ1···Ā4A5

%L+0

]
, (5.78)

h
(5)
0 =

√
s

3!

[
LĀ1

0 · · ·LĀ3
0 L̄+0ΓĀ1···Ā3

iσ2L+0

+
iλ

5
(δ(5,3)εā1ā2ā3ā4ā5L

ā1
0 Lā2

0 Lā3
0 Lā4

0 Lā5
0 − δ(3,5)εā′

1ā′
2ā′

3ā′
4ā′

5
L

ā′
1

0 L
ā′
2

0 L
ā′
3

0 L
ā′
4

0 L
ā′
5

0 )
]
. (5.79)

This implies that the bosonic 8-form C(8) is expanded as

TdC(8) = TNRΩ−2dC
(8)
0 + TNRdC

(8)
2 + O(Ω4) , (5.80)

dC
(8)
0 = 0 , (5.81)

dC
(8)
2 =

2i
√

s

5!
λ
[
δ(5,3)εā1···ā5e

ā1
0 · · · eā5

0 − δ(3,5)εā′
1···ā

′
5
e
ā′
1

0 · · · eā′
5

0

]
(F1)

2 . (5.82)

As before, we find

d(
√

s det g0 d8ξ) = d(det((LĀ
0 )i)d

8ξ) = −i

√
s

7!
L

Ā1
0 · · ·LĀ7

0 L̄+0ΓĀ1···Ā7
iσ2L+0 . (5.83)

This implies that hdiv
9 and the fermionic terms in Ldiv

DBI cancel each other. The bosonic

terms are also deleted by choosing C
(8)
0 = − 1

8!εĀ0···Ā7
eĀ0
0 · · · eĀ7

0 . Thus we find that the

matrix M leads to the consistent non-relativistic limit of the AdS D7-brane.

The non-relativistic D7-brane action is given as (5.9) with (5.35) and

LD7
WZ =

∫ 1

0
dt

[
C(8)

2 + C(6)
1 F̂1 +

1

2
C(4)

0 F̂2
1

]
+ C

(8)
2 (5.84)
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with

C(8)
2 = 2c

[ 1

7!
L̂

Ā1
0 · · · L̂Ā7

0 ( ˆ̄L−1ΓĀ1···Ā7
iσ2θ− + ˆ̄L+2ΓĀ1···Ā7

iσ2θ+)

+
1

6!
L̂Ā1

0 · · · L̂Ā6
0 L̂

A7
1 ( ˆ̄L−1ΓĀ1···Ā6A7

iσ2θ+ + ˆ̄L+0ΓĀ1···Ā6A7
iσ2θ−)

+
1

6!
L̂

Ā1
0 · · · L̂Ā6

0 L̂
Ā7
2

ˆ̄L+0ΓĀ1···Ā7
iσ2θ+

+
1

5!
L̂

Ā1
0 · · · L̂Ā5

0 L̂
A6
1 L̂

A7
1

ˆ̄L+0ΓĀ1···Ā5A6A7
iσ2θ+

]
,

C(6)
1 = 2c

[ 1

5!
L̂Ā1

0 · · · L̂Ā5
0 ( ˆ̄L+0ΓĀ1···Ā5

%θ− + ˆ̄L−1ΓĀ1···Ā5
%θ+)

+
1

4!
L̂

Ā1
0 · · · L̂Ā4

0 L̂
A5
1

ˆ̄L+0ΓĀ1···Ā4A5
%θ+

]
,

C(4)
0 = 2c

[ 1

3!
L̂

Ā1
0 · · · L̂Ā3

0
ˆ̄L+0ΓĀ1···Ā3

iσ2θ+

]
. (5.85)

The bosonic contribution is
∫

Σ
C

(8)
2 = −2i

√
sλ

∫

Σ

[
δ(5,3)volΣ5A1F1 − δ(3,5)volΣ′

5
A1F1

]

= −2i
√

sλ

∫
d8ξ

√
s det g0

[
δ(5,3)(A1)i′(

∗F1)
i′ − δ(3,5)(A1)i(

∗F1)
i
]

(5.86)

where i(i′) represents worldvolume directions in AdS5(S
5), and ∗ means the Hodge dual in

Σ3 or Σ′
3. The κ-gauge symmetry is fixed by θ+ = 0, and then the non-relativistic action

is simplified as

SD7
NR = TNR

∫
d8ξ

√
s det g0

[1

2
gij
0 ∂iy

A∂jyA +
λ2

2
(my2 − ny′

2
)

+2iθ̄−γiDiθ− +
1

4
(F1)ij(F1)

ij
]

+ TNR

∫

Σ
C

(8)
2 . (5.87)

In summary, we have derived non-relativistic AdS Dp-brane actions in AdS5×S5. In

the flat limit λ → 0, these actions for Lorentzian branes are reduced to the non-relativistic

Dp-brane actions in flat spacetime derived in [12].

6. NH superalgebra of branes in AdS4/7×S7/4

The super-isometry algebra of the AdSq+2×S9−q (q = 2, 5) solution of the eleven-dimensio-

nal supergravity is generated by translation PA, Lorentz rotation JAB = (Jab, Ja′b′) and

32-component Majorana supercharge Q as

[Pa, Pb] = 4ε2λ2Jab , [Pa′ , Pb′ ] = −ε2λ2Ja′b′ ,

[Jab, Pc] = ηbcPa − ηacPb , [Ja′b, Pc′ ] = ηb′c′Pa′ − ηa′c′Pb′ ,

[Jab, Jcd] = ηbcJad + 3-terms , [Ja′b′ , Jc′d′ ] = ηb′c′Ja′d′ + 3-terms ,

[PA, Q] = −λ

2
QΓ̂A , [JAB , Q] =

1

2
QΓAB ,

{Q,Q} = −2CΓAPA + λCΓ̂ABJAB (6.1)
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where Γ̂A = (2IΓa,IΓa′

) and Γ̂AB = (2IΓab,−IΓa′b′), and ε2 = 1 for q = 2 and ε2 = −1

for q = 5. For q = 2, this superalgebra is the super-AdS4×S7 algebra, osp(8|4), with the

vector index of AdS4, a = 0, 1, 2, 3 and that of S7, a′ = 4, 5, . . . , 9, \. On the other hand,

for q = 5, this superalgebra is the super-AdS7×S4 algebra, osp(8∗|4) with the vector index

of S4, a = \, 1, 2, 3 and that of AdS7, a′ = 4, 5, . . . , 9, 0. We use the almost positive metric

ηµν . We define λ and I as

λ =
1

R
, R2 = 2kR2

S =
1

k
R2

AdS, k =

{
1/2, q = 2

2, q = 5

I = Γ]123, Γ] =

{
Γ0 q = 2

−Γ\ q = 5
(6.2)

where RS and RAdS are the radii of S9−q and that of AdSq+2, respectively. The gamma

matrix ΓA ∈ Spin(1,10) and the charge conjugation matrix C satisfy (2.2).

Letting g be a group element of the supergroup of the superalgebra (6.1), the LI Cartan

one-form is defined as

Ω = g−1dg = LAPA +
1

2
LABJAB + QαLα . (6.3)

The (anti-)commutation relations [TÂ, TB̂} = fÂB̂
ĈTĈ , TÂ = {PA, JAB , QI}, are equivalent

to the Maurer-Cartan (MC) equation

dΩ = −Ω ∧ Ω . (6.4)

The MC equations corresponding to the superalgebra (6.1) are derived as

dLA = −ηBCLABLC − L̄ΓAL ,

dLab = −4ε2λ2LaLb − ηcdL
caLbd + 2λL̄IΓabL ,

dLa′b′ = +ε2λ2La′

Lb′ − ηc′d′L
c′a′

Lb′d′ − λL̄IΓa′b′L ,

dLα =
λ

2
LAΓ̂AL − 1

4
LABΓABL . (6.5)

We introduce a matrix M

M = `ΓĀ0···Āp , `2(−1)[
p+1
2

]s = 1 (6.6)

where {Ā0, . . . , Āp} are directions along which the brane worldvolume extends, so A =

(Ā, A). Let an AdS brane extend along m directions in AdS4 or S4 and n directions in

S7 or AdS7, then the AdS brane worldvolume admits AdSm(Hm)×Sn or Sm × AdSn(Hn)

isometry algebra for a Lorentzian (a Euclidean) brane, respectively. After contraction, the

isometry of the transverse space is reduced to the Poincaré algebra iso(4 − m)×iso(7 −
n) (iso(3 − m, 1)×iso(7 − n)) or iso(4 − m)×iso(7 − n) (iso(4 − m)×iso(6 − n, 1)) for a

Lorentzian (a Euclidean) brane. We require that the contracted superalgebra contains a

super subalgebra, the supersymmetrization of the direct product of the isometry algebra

on the AdS brane worldvolume and the Lorentz symmetry in the transverse space, so(m−
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1-brane 2-brane 5-brane 6-brane 9-brane 10-brane

(1,1) (0,3), (2,1) (1,5), (3,3) (0,7), (2,5), (4,3) (3,7) (4,7)

Table 4: Branes in AdS4×S7 and S4 × AdS7

1, 2)×so(n + 1)×so(4 −m)×so(7− n) ( so(m, 1)×so(n + 1)×so(3 −m, 1)×so(7 − n) ) for a

Lorentzian (a Euclidean) brane in AdS4×S7, and so(m+1)×so(n−1, 2)×so(4−m)×so(7−n)

( so(m + 1)×so(n, 1)×so(4 − m)×so(6 − n, 1) ) for a Lorentzian (a Euclidean) brane in

S4 × AdS7, respectively. This is satisfied if

M ′ΓĀ = ΓĀM , M ′Γ̂ĀB̄ = Γ̂ĀB̄M , (6.7)

where

M ′ = C−1MT C = (−1)p+1+[ p+1
2

]M . (6.8)

The first condition is satisfied if p = 1, 2 mod 4. Since

M ′Γ̂ĀB̄ = (−1)p+1+d+[ p+1
2

]Γ̂ĀB̄M (6.9)

where d is the number of the Dirichlet directions contained in {], 1, 2, 3}, these are satisfied

by (odd,odd)-branes (p = 1 mod 4) and (even,odd)-branes (p = 2 mod 4). We depict

branes in table 4. The 10-brane is just AdS4/7×S7/4 itself as M = 1. This table shows

possible 1/2 supersymmetric subspaces which contain 1/2 BPS branes in AdS4/7×S7/4.

The p-branes with p = 1 mod 4 are 1/2 BPS Dirichlet branes of an open supermembrane

in AdS4/7×S7/4 [26, 27]. The brane probe analysis for M-branes [42] is also consistent with

this result.

We derive the NH superalgebra for these branes as IW contractions of the M pp-wave

superalgebra.First, we rescale generators as

PA → 1

Ω
PA , JĀB → 1

Ω
JĀB , Q− → 1

Ω
Q− (6.10)

where we have decomposed Q as

Q = Q+ + Q− , Q±P± = Q± , P± =
1

2
(1 + M) . (6.11)

Substituting these into (6.1) and then taking the limit Ω → 0, we derive the NH superal-

– 29 –



J
H
E
P
1
0
(
2
0
0
6
)
0
7
8

gebra for an AdS brane

[Pā, Pb̄] = 4ε2λ2Jāb̄ , [Pā′ , Pb̄′ ] = −ε2λ2Jā′ b̄′ ,

[Pā, Pb] = 4ε2λ2Jāb , [Pā′ , Pb′ ] = −ε2λ2Jā′b′ ,

[JĀB̄ , PC̄ ] = ηB̄C̄PĀ − ηĀC̄PB̄ , [JĀB , PC̄ ] = −ηĀC̄PB ,

[JAB , PC ] = ηBC̄PA − ηACPB ,

[JĀB̄ , JC̄D̄] = ηB̄C̄JĀD̄ + 3-terms , [JAB, JCD] = ηBCJAD + 3-terms ,

[JĀB̄ , JC̄D] = ηB̄C̄JĀD − ηĀC̄JB̄D , [JAB , JC̄D] = ηBDJC̄A − ηADJC̄B ,

[PĀ, Q±] = −λ

2
Q±Γ̂Ā , [PA, Q+] = −λ

2
Q−Γ̂A ,

[JĀB̄ , Q±] =
1

2
Q±ΓĀB̄ , [JAB , Q±] =

1

2
Q±ΓAB , [JĀB , Q+] =

1

2
Q−ΓĀB ,

{Q+, Q+} = −2CΓĀP+PĀ + λCΓ̂ĀB̄P+JĀB̄ + λCΓ̂ABP+JAB ,

{Q+, Q−} = −2CΓAP−PA + 2λCΓ̂ĀBP−JĀB . (6.12)

We note that this superalgebra contains two bosonic algebras and a superalgebra as

subalgebras. One is the isometry of the (m,n)-brane worldvolume, generated by {PĀ, JĀB̄},
the AdSm(Hm)×Sn algebra for a Lorentzian (a Euclidean) brane in AdS4×S7 and the

Sm × AdSn(Hn) algebra for a Lorentzian (a Euclidean) brane in S4 × AdS7. Another is

the isometry in the transverse space generated by {PA, JAB}, the Poincaré algebra iso(4−
m)×iso(7−n) ( iso(3−m, 1)×iso(7−n) ) in AdS4×S7 and iso(4−m)×iso(7−n) ( iso(4−
m)×iso(6 − n, 1) ) in S4 × AdS7 for a Lorentzian (a Euclidean) brane. The other is the

superalgebra generated by {PĀ, JĀB̄ , JAB, Q+}

[Pā, Pb̄] = 4ε2λ2Jāb̄ , [Pā′ , Pb̄′ ] = −ε2λ2Jā′ b̄′ , [JĀB̄ , PC̄ ] = ηB̄C̄PĀ − ηĀC̄PB̄ ,

[JĀB̄ , JC̄D̄] = ηB̄C̄JĀD̄ + 3-terms , [JAB , JCD] = ηBCJAD + 3-terms ,

[PĀ, Q+] = −λ

2
Q+Γ̂Ā , [JĀB̄ , Q+] =

1

2
Q+ΓĀB̄ , [JAB , Q+] =

1

2
Q+ΓAB ,

{Q+, Q+} = −2CΓĀP+PĀ + λCΓ̂ĀB̄P+JĀB̄ + λCΓ̂ABP+JAB , (6.13)

which is the supersymmetrization of the algebra, so(m−1, 2)×so(n+1)×so(4−m)×so(7−n)

( so(m, 1)×so(n + 1)×so(3 − m, 1)×so(7 − n) ) for a Lorentzian (a Euclidean) brane in

AdS4×S7, and so(m + 1)×so(n − 1, 2)×so(4 − m)×so(7 − n) ( so(m + 1)×so(n, 1)×so(4 −
m)×so(6 − n, 1) ) for a Lorentzian (a Euclidean) brane in S4 × AdS7. For a (4,7)-brane

the superalgebra is obviously osp(8|4) or osp(8∗|4). Since the dimension of the bosonic

subalgebra is 18 for (0,3)- and (3,3)-branes, 20 for (1,1)-, (2,1)-, (1,5)- and (2,5)-branes,

22 for a (4,3)-brane, and 34 for (0,7)- and (3,7)-branes, one may guess the superalgebra

as those including variants of osp(4|2)×osp(4|2), osp(6|2)×so(2|2), sp(4|2)×osp(4|2) and

osp(8|2)×su(2), respectively. The existence of this superalgebra is ensured by (6.7).
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The NH superalgebra (6.12) is equivalent to the MC equation

dLĀ = −ηB̄C̄LĀB̄LC̄ − L̄+ΓĀL+ , (6.14)

dLA = −ηB̄C̄LAB̄LC̄ − ηBCLABLC − L̄+ΓAL− − L̄−ΓAL+ , (6.15)

dLāb̄ = −4ε2λ2LāLb̄ − ηc̄d̄L
c̄āLb̄d̄ + 2λL̄+IΓāb̄L+ , (6.16)

dLā′ b̄′ = +λ2Lā′

Lb̄′ − ηc̄′d̄′L
c̄′ā′

Lb̄′d̄′ − λL̄+IΓā′b̄′L+ , (6.17)

dLAB = −ηCDLCDLBD + λL̄+Γ̂ABL+ , (6.18)

dLāb = −4ε2λ2LāLb − ηc̄d̄L
c̄āLbd̄ − ηcdL

cāLbd

+2λL̄+IΓābL− + 2λL̄−IΓābL+ , (6.19)

dLā′b′ = +ε2λ2Lā′

Lb′ − ηc̄′d̄′L
c̄′ā′

Lb′d̄′ − ηc′d′L
c′ā′

Lb′d′

−λL̄+IΓā′b′L− − λL̄−IΓā′b′L+ , (6.20)

dL+ =
λ

2
LĀΓ̂ĀL+ − 1

4
LĀB̄ΓĀB̄L+ − 1

4
LABΓABL+ , (6.21)

dL− =
λ

2
LĀΓ̂ĀL−

λ

2
LAΓ̂AL+

−1

4
LĀB̄ΓĀB̄L− − 1

4
LABΓABL− − 1

2
LĀBΓĀBL+ . (6.22)

The MC equation above can be obtained by rescaling Cartan one-forms in (6.5) as

LA → ΩLA , LĀB → ΩLĀB , L− → ΩL− , (6.23)

and taking the limit Ω → 0.

7. NH superalgebra of branes in M pp-wave

We define

P± =
1√
2
(P\ ± P0) , P ∗

î
=

(
P ∗

i =

{
Ji0

Ji\
, P ∗

i′ =

{
Ji′\

Ji′0

)
for

{
AdS4×S7

AdS7×S4

Q(±) = Q(±)`± , `± =
1

2
Γ±Γ∓ , Γ± =

1√
2
(Γ\ ± Γ0) , (7.1)

I = Γ]123 , Γ] =

{
Γ0

−Γ\ for

{
AdS4×S7

AdS7×S4 (7.2)

where where i = 1, 2, 3 and i′ = 4, 5, 6, 7, 8, 9.

Scaling generators in the super-AdS4/7×S7/4 algebra as

P+ → 1

Λ2
P+ , Pî →

1

Λ
Pî , P ∗

î
→ 1

Λ
P ∗

î
, Q(+) → 1

Λ
Q(+) (7.3)
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and taking the limit Λ → 0 limit [6], we obtain the M pp-wave superalgebra

[P−, Pi] =
4λ2

√
2

P ∗
i , [P−, Pi′ ] =

λ2

√
2
P ∗

i′ , [P−, P ∗
î
] = − 1√

2
Pî ,

[Pî, P
∗
ĵ
] =

1√
2
ηîĵP+ , [Pî, Jĵk̂] = ηîĵPk̂ − ηîk̂Pĵ , [P ∗

î
, Jĵk̂] = ηîĵP

∗
k̂
− ηîk̂P

∗
ĵ

,

[Jîĵ, Jk̂l̂] = ηĵk̂Jîl̂ + 3-terms ,

[P−, Q(+)] = − 3λ

2
√

2
Q(+)f , [P−, Q(−)] = − λ

2
√

2
Q(−)f ,

[Pi, Q
(−)] = − λ√

2
Q(+)fΓiΓ+ , [Pi′ , Q

(−)] = − λ

2
√

2
Q(+)fΓi′Γ+ ,

[Jîĵ, Q
(±)] =

1

2
Q(±)Γîĵ , [P ∗

î
, Q(−)] =

1

2
√

2
Q(+)ΓîΓ+ ,

{Q(+), Q(+)} = −2CΓ−P+ ,

{Q(−), Q(−)} = −2CΓ+P− − λ√
2
CΓ̂îĵJîĵ

{Q(±), Q(∓)} = −2CΓî`∓Pî − 4λCfΓi`∓P ∗
i ∓ 2λCfΓi′`∓P ∗

i′ , (7.4)

where Γ̂îĵ = (−2Γ+fΓij,Γ+fΓi′j′) and f = Γ123. The bosonic subalgebra is the semi-direct

product of the Heisenberg algebra generated by {Pî, P
∗
î
} with an outer automorphism P−

and the Lorentz symmetry generated by Jîĵ .

7.1 Lorentzian branes

We consider a Lorentzian pp-wave brane for which (+,−) directions are contained in the

Neumann directions. We denote Neumann and Dirichlet directions, Ā = (+,−, ¯̂i) and

A = î , respectively.

We derive NH superalgebras of Lorentzian pp-wave branes as IW contractions of the

M pp-wave superalgebra.

First we consider the bosonic subalgebra. The contraction is taken by rescaling gener-

ators as

PA → 1

Ω
PA , JĀB → 1

Ω
JĀB , P ∗

î
→ 1

Ω
P ∗

î
, (7.5)

and taking the limit Ω → 0. One obtains the NH algebra of an M pp-wave brane

[P−, Pī] =
4λ2

√
2

P ∗
ī , [P−, Pi] =

4λ2

√
2

P ∗
i , [P−, Pī′ ] =

λ2

√
2
P ∗

ī′ , [P−, Pi′ ] =
λ2

√
2
P ∗

i′ ,

[P−, P ∗
¯̂i
] = − 1√

2
P¯̂i

, [P−, P ∗
î
] = − 1√

2
Pî , [P¯̂i

, P ∗
¯̂j
] =

1√
2
ηîĵP+ ,

[P¯̂i
, J¯̂jk̂

] = η¯̂i¯̂j
Pk̂ , [P ∗

¯̂i
, J¯̂jk̂

] = η¯̂i¯̂j
P ∗

k̂
, (7.6)
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1-brane 2-brane 5-brane 6-brane 9-brane 10-brane

(+,−) (+,−; 0, 1) (+,−; 0, 4) (+,−; 0, 5) (+,−; 2, 6) -

(+,−; 2, 2) (+,−; 2, 3)

Table 5: Lorentzian M pp-wave branes

and

[P¯̂i
, J¯̂j

¯̂
k
] = η¯̂i¯̂j

P¯̂
k
− η¯̂i

¯̂
k
P¯̂j

, [Pî, Jĵk̂] = ηîĵPk̂ − ηîk̂Pĵ ,

[P ∗
¯̂i
, J¯̂j

¯̂
k
] = η¯̂i¯̂j

P ∗
¯̂
k
− η¯̂i

¯̂
k
P ∗

¯̂j
, [P ∗

î
, Jĵk̂] = ηîĵP

∗
k̂
− ηîk̂P

∗
ĵ

,

[J¯̂i¯̂j
, J¯̂

k
¯̂
l
] = η¯̂j

¯̂
k
J¯̂i

¯̂
l
+ 3-terms , [Jîĵ , Jk̂l̂] = ηĵk̂Jîl̂ + 3-terms ,

[J¯̂i¯̂j
, J¯̂

kl̂
] = η¯̂j

¯̂
k
J¯̂il̂

− η¯̂i
¯̂
k
J¯̂jl̂

, [Jîĵ , J¯̂
kl̂

] = ηîl̂Jĵ
¯̂
k
− ηĵ l̂Jî

¯̂
k

. (7.7)

Next we consider the fermionic part. We decompose Q(•) as

Q
(•)
± = ±Q

(•)
± M with M = `Γ+−Ā1···Āp−1 , M2 = `2(−1)[

p−1
2

] = 1 (7.8)

which satisfies

M ′ = C−1MTC = (−1)p+1+[ p+1
2

]M . (7.9)

We demand that

M ′ΓĀ = ΓĀM , (7.10)

M ′Γ̂
¯̂i¯̂j = Γ̂

¯̂i¯̂jM . (7.11)

Since

M ′ΓĀ = (−1)1+[ p+1
2

]ΓĀM , (7.12)

the first condition (7.10) is satisfied when p = 1, 2 mod 4. The second condition (7.11)

restricts the directions along which a pp-wave brane extends. Since

M ′Γ̂
¯̂i¯̂j = (−1)1+[ p+1

2
]+nΓ̂

¯̂i¯̂jM (7.13)

where n is the number of the Neumann directions contained in {1, 2, 3}, we find that

n =even for p = 1, 2 mod 4. In table 5 we summarize the result. This shows possible 1/2

supersymmetric subspaces in M pp-wave. Among them, the p-branes with p = 1 mod 4

are Dirichlet branes of an open supermembrane in M pp-wave [46, 47].

Scaling Q
(•)
± as

Q
(•)
− → 1

Ω
Q

(•)
− (7.14)
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and taking the limit Ω → 0, we obtain the fermionic part of the NH superalgebra

[P−, Q
(+)
± ] = − 3λ

2
√

2
Q

(+)
± f , [P−, Q

(−)
± ] = − λ

2
√

2
Q

(−)
± f ,

[Pī, Q
(−)
± ] = − λ√

2
Q

(+)
± fΓīΓ+ , [Pi, Q

(−)
+ ] = − λ√

2
Q

(+)
− fΓiΓ+ ,

[Pī′ , Q
(−)
± ] = − λ

2
√

2
Q

(+)
± fΓī′Γ+ , [Pi′ , Q

(−)
+ ] = − λ

2
√

2
Q

(+)
− fΓi′Γ+ ,

[J¯̂i¯̂j
, Q

(•)
± ] =

1

2
Q

(•)
± Γ¯̂i¯̂j

, [Jîĵ , Q
(•)
± ] =

1

2
Q

(•)
± Γîĵ , [J¯̂iĵ

, Q
(±)
+ ] =

1

2
Q

(±)
− Γ¯̂iĵ

,

[P ∗
¯̂i
, Q

(−)
± ] =

1

2
√

2
Q

(+)
± Γ¯̂i

Γ+ , [P ∗
î
, Q

(−)
+ ] =

1

2
√

2
Q

(+)
− ΓîΓ+ ,

{Q(+)
+ , Q

(+)
+ } = −2CΓ−P+P+ ,

{Q(−)
+ , Q

(−)
+ } = −2CΓ+P+P− +

λ√
2
CΓ̂

¯̂i¯̂jP+J¯̂i¯̂j
+

λ√
2
CΓ̂îĵP+Jîĵ ,

{Q(−)
± , Q

(−)
∓ } =

√
2λCΓ̂

¯̂iĵJ¯̂iĵ
,

{Q(±)
+ , Q

(∓)
+ } = −2CΓ

¯̂i`∓P+P¯̂i
− 4λCfΓī`∓P+P ∗

ī ∓ 2λCfΓī′`∓P+P ∗
ī′ ,

{Q(±)
+ , Q

(∓)
− } = −2CΓî`∓P−Pî − 4λCfΓi`∓P−P ∗

i ∓ 2λCfΓi′`∓P−P ∗
i′ . (7.15)

Summarizing we have derived the NH superalgebra of an M pp-wave brane as (7.6), (7.7)

and (7.15).

We note that the NH superalgebra of a Lorentzian M pp-wave brane contains a super-

subalgebra generated by P±, P¯̂i
, P ∗

¯̂i
, J¯̂i¯̂j

, Jîĵ and Q
(±)
+

[P−, Pī] =
4λ2

√
2

P ∗
ī , [P−, Pī′ ] =

λ2

√
2
P ∗

ī′ , [P−, P ∗
¯̂i
] = − 1√

2
P¯̂i

,

[P¯̂i
, P ∗

¯̂j
] =

1√
2
ηîĵP+ , [P¯̂i

, J¯̂j
¯̂
k
] = η¯̂i¯̂j

P¯̂
k
− η¯̂i

¯̂
k
P¯̂j

, [P ∗
¯̂i
, J¯̂j

¯̂
k
] = η¯̂i¯̂j

P ∗
¯̂
k
− η¯̂i

¯̂
k
P ∗

¯̂j
,

[J¯̂i¯̂j
, J¯̂

k
¯̂
l
] = η¯̂j

¯̂
k
J¯̂i

¯̂
l
+ 3-terms , [Jîĵ , Jk̂l̂] = ηĵk̂Jîl̂ + 3-terms ,

[P−, Q
(+)
+ ] = − 3λ

2
√

2
Q(+)

; f , [P−, Q
(−)
+ ] = − λ

2
√

2
Q

(−)
+ f ,

[Pī, Q
(−)
+ ] = − λ√

2
Q

(+)
+ fΓīΓ+ , [Pī′ , Q

(−)
+ ] = − λ

2
√

2
Q

(+)
+ fΓī′Γ+ ,

[J¯̂i¯̂j
, Q

(•)
+ ] =

1

2
Q

(•)
+ Γ¯̂i¯̂j

, [Jîĵ , Q
(•)
+ ] =

1

2
Q

(•)
+ Γîĵ , [P ∗

¯̂i
, Q

(−)
+ ] =

1

2
√

2
Q

(+)
+ Γ¯̂i

Γ+ ,

{Q(+)
+ , Q

(+)
+ } = −2CΓ−P+P+ ,

{Q(−)
+ , Q

(−)
+ } = −2CΓ+P+P− +

λ√
2
CΓ̂

¯̂i¯̂jP+J¯̂i¯̂j
+

λ√
2
CΓ̂îĵP+Jîĵ ,

{Q(±)
+ , Q

(∓)
+ } = −2CΓ

¯̂i`∓P+P¯̂i
− 4λCfΓī`∓P+P ∗

ī ∓ 2λCfΓī′`∓P+P ∗
ī′ . (7.16)

This is the supersymmetrization of the pp-wave algebra which is the isometry on the brane

worldvolume and the Lorentz symmetry in the transverse space. The conditions (7.10)

and (7.11) ensure the existence of this superalgebra.
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(1,1) (1,2), (3,0) (1,5), (3,3) (1,6), (3,4) - -

Table 6: Euclidean M pp-wave branes

7.2 Euclidean branes

We consider a Euclidean pp-wave brane for which (+,−) directions are contained in the

Dirichlet directions. We denote Neumann and Dirichlet directions as Ā = ¯̂i and A =

(+,−, î) , respectively.

We derive NH superalgebras of Euclidean pp-wave branes as IW contractions of the M

pp-wave superalgebra. First we consider the bosonic subalgebra. The contraction is taken

by rescaling generators as

PA → 1

Ω
PA , JĀB → 1

Ω
JĀB , P ∗

¯̂i
→ 1

Ω
P ∗

¯̂i
, (7.17)

and taking the limit Ω → 0. One obtains the NH algebra of a Euclidean M pp-wave brane

[P−, Pī] =
4λ2

√
2

P ∗
ī , [P−, Pī′ ] =

λ2

√
2
P ∗

ī′ , [P−, P ∗
î
] = − 1√

2
Pî , [P¯̂i

, J¯̂jk̂
] = η¯̂i¯̂j

Pk̂ ,

[P¯̂i
, P ∗

¯̂j
] =

1√
2
η¯̂i¯̂j

P+ , [Pî, P
∗
ĵ
] =

1√
2
ηîĵP+ , [P ∗

î
, J¯̂jk̂

] = −ηîk̂P
∗
¯̂j

, (7.18)

and (7.7).

Next we consider the fermionic part of the NH superalgebra. We decompose Q(•) as

Q
(•)
± = ±Q

(•)
± M , M = `ΓĀ0···Āp , M2 = `2(−1)[

p+1
2

] = 1 . (7.19)

We demand that the conditions (7.10) and (7.11) are satisfied. The first condition (7.10)

implies that p = 1, 2 mod 4 as

M ′ΓĀ = (−1)1+[ p+1
2

]ΓĀM . (7.20)

On the other hand, since

M ′Γ̂
¯̂i¯̂j = (−1)n+[ p+1

2
]Γ̂

¯̂i¯̂jM (7.21)

where n is the number of the Neumann directions contained in {1, 2, 3}, the second condition

is satisfied when n =odd for p = 1, 2 mod 4. We summarize the result in table 6. Among

these 1/2 supersymmetric subspaces, the p-branes with p = 1 mod 4 are Dirichlet branes

of an open supermembrane in M pp-wave [46, 47].
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Scaling Q
(•)
± as (3.17) and taking the limit Ω → 0, we obtain the fermionic part of the

NH superalgebra of a Euclidean M pp-wave brane

[P−, Q
(+)
+ ] = − 3λ

2
√

2
Q

(+)
− f , [P−, Q

(−)
+ ] = − λ

2
√

2
Q

(−)
− f ,

[Pī, Q
(−)
± ] = − λ√

2
Q

(+)
± fΓīΓ+ , [Pi, Q

(−)
+ ] = − λ√

2
Q

(+)
− fΓiΓ+ ,

[Pī′ , Q
(−)
± ] = − λ

2
√

2
Q

(+)
± fΓī′Γ+ , [Pi′ , Q

(−)
+ ] = − λ

2
√

2
Q

(+)
− fΓi′Γ+ ,

[J¯̂i¯̂j
, Q•

±] =
1

2
Q

(•)
± Γ¯̂i¯̂j

, [Jîĵ, Q
•
±] =

1

2
Q

(•)
± Γîĵ , [J¯̂iĵ

, Q•
+] =

1

2
Q

(•)
− Γ¯̂iĵ

,

[P ∗
¯̂i
, Q

(−)
+ ] =

1

2
√

2
Q

(+)
− Γ¯̂i

Γ+ , [P ∗
î
, Q

(−)
± ] =

1

2
√

2
Q

(+)
± ΓîΓ+ ,

{Q(+)
± , Q

(+)
∓ } = −2CΓ−P∓P+ ,

{Q(−)
+ , Q

(−)
+ } = − λ√

2
CΓ̂

¯̂i¯̂jJ¯̂i¯̂j
− λ√

2
CΓ̂îĵJîĵ ,

{Q(−)
± , Q

(−)
∓ } = −2CΓ+P∓P− −

√
2λCΓ̂

¯̂iĵJ¯̂iĵ
,

{Q(±)
+ , Q

(∓)
+ } = −2CΓ

¯̂i`∓P+P¯̂i
− 4λCfΓi`∓P+P ∗

i ∓ 2λCfΓi′`∓P+P ∗
i′ ,

{Q(±)
+ , Q

(∓)
− } = −2CΓî`∓P−Pî − 4λCfΓī`∓P−P ∗

ī ∓ 2λCfΓī′`∓P−P ∗
ī′ . (7.22)

Summarizing we have derived the NH superalgebra of a Euclidean M pp-wave brane

as (7.18), (7.7) and (7.22).

We note that there exists a super-subalgebra of the NH superalgebra generated by P¯̂i
,

P ∗
î
, J¯̂i¯̂j

, Jîĵ and Q
(±)
+

[P¯̂i
, J¯̂j

¯̂
k
] = η¯̂i¯̂j

P¯̂
k
− η¯̂i

¯̂
k
P¯̂j

, [P ∗
î
, Jĵk̂] = ηîĵP

∗
k̂
− ηîk̂P

∗
ĵ

,

[J¯̂i¯̂j
, J¯̂

k
¯̂
l
] = η¯̂j

¯̂
k
J¯̂i

¯̂
l
+ 3-terms , [Jîĵ, Jk̂l̂] = ηĵk̂Jîl̂ + 3-terms ,

[Pī, Q
(−)
+ ] = − λ√

2
Q

(+)
+ fΓīΓ+ , [Pī′ , Q

(−)
+ ] = − λ

2
√

2
Q

(+)
+ fΓī′Γ+ ,

[J¯̂i¯̂j
, Q•

+] =
1

2
Q

(•)
+ Γ¯̂i¯̂j

, [Jîĵ , Q
•
+] =

1

2
Q

(•)
+ Γîĵ , [P ∗

î
, Q

(−)
+ ] =

1

2
√

2
Q

(+)
+ ΓîΓ+ ,

{Q(−)
+ , Q

(−)
+ } = − λ√

2
CΓ̂

¯̂i¯̂jJ¯̂i¯̂j
− λ√

2
CΓ̂îĵJîĵ ,

{Q(±)
+ , Q

(∓)
+ } = −2CΓ

¯̂i`∓P+P¯̂i
− 4λCfΓi`∓P+P ∗

i ∓ 2λCfΓi′`∓P+P ∗
i′ . (7.23)

This is the supersymmetrization of the Poincaré algebra generated by {P¯̂i
, J¯̂i¯̂j

} which is

the isometry on the brane worldvolume and the Lorentz symmetry in the transverse space

generated by {P ∗
î
, Jîĵ}. The conditions (7.10) and (7.11) ensure the existence of this super-

subalgebra.
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8. Branes in AdS4/7×S7/4

The action for an M2-brane [48] is composed of the NG action and the WZ action

S = T

∫

Σ
[LNG + LWZ] , LNG = dp+1ξ

√
s det gij , (8.1)

where s = −1 for a Lorentzian brane and s = 1 for a Euclidean brane. gij is given by

gij = LA
i LB

j ηAB with LA
i = ∂iZ

M̂LA
M̂

. T is the tension of the brane. For an M5-brane

case, the self-duality of the two-form gauge field B on the brane is imposed on the field

equations, or the NG action is replaced by the PST action [49]

LPST =
√

s det(gij − iα2H∗
ij) + α2

√
s det g

4
H∗ijHij , (8.2)

Hij = Hijkv
k , H∗ij = H∗ijkvk , vi =

∂ia√
gjk∂ja∂ka

,

H = H + C3 , H∗ijk =
1

3!
√

s det g
εijklmnHlmn , H = dB

where C3 is a pullback of the three-form gauge field, and α2 = i
√

s. Here the PST scalar

field a is contained in the M5-brane case as a modification of the usual DBI action. The WZ

term is known to be characterized by manifestly supersymmetric (p+2)-form hp+2 = dLWZ ,

which is composed of the pullback of the supercurrents, LA and Lα , on the supergroup

manifold and the modified field strength H. The (p + 2)-form hp+2 is closed but not exact

on the superspace, because LWZ is not superinvariant but quasi-superinvariant. Expanding

hp+2 with respect to H

hp+2(L
A, Lα,H) = h(p+2)(LA, Lα) − c

2
Hh(p−1)(LA, Lα) , (8.3)

where c is a constant determined below, the closedness condition dhp+2 = 0 is expressed as

dh(p−1) = 0 , (8.4)

dh(p+2) − c

2
dHh(p−1) = 0 . (8.5)

8.1 CE-cohomology classification

We show that Mp-brane actions in AdSq+2×S9−q (q = 2, 5) can be classified as non-trivial

elements of the CE-cohomology on the differential algebra, MC equations (6.5) for the

super-AdSq+2×S9−q algebra.

In order to avoid an additional dimensionful parameter, we assign dimensions as

LA Lα λ H
dim 1 1/2 −1 3

. (8.6)

For structureless branes, the dimension of SWZ must be equal to the dimension of SNG,

from which we find dimhp+2 = p + 1 because dim hp+2 = dimLWZ = dimLNG = p + 1,

and thus dimh(k) = k − 1. h(k) is composed of LA, Lα and λ, and thus we can write
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h(k) as λl(LA)m(Lα)n. The integers l,m and n are restricted by the properties of h(k),

dim h(k) = k − 1 and deg h(k) = k, as

−l + m +
1

2
n = k − 1, m + n = k. (8.7)

For consistent flat limit, we demand l ≥ 0 because λ is related to the inverse of the radii

of AdSq+2 and S9−q. In addition, we require that εa1···a4 and εa′
1···a

′
7

are accompanied with

λ; λεa1···a4 and λεa′
1···a

′
7
, because εa1···a4 and εa′

1···a
′
7

disappear in the flat limit. Noting

that (8.7) implies l = 1 − 1
2n ≤ 1, we consider the cases with l = 0 and 1. It is easy

to see that (m,n) = (k − 2, 2) for l = 0 while (m,n) = (k, 0) for l = 1. In the former

case, terms of the form LA1 · · ·LAk−2L̄ΓA1···Ak−2
L are candidates for h(k). These terms are

non-trivial only for k = 3, 4 mod 4, because CΓA1···Ak−2
is symmetric if k − 2 = 1, 2 mod

4. In the latter case, λεa1···a4L
a1 · · ·La4 and λεa′

1···a
′
7
La′

1 · · ·La′
7 are candidates for h(4) and

h(7), respectively. We summarize the non-trivial candidates for h(k)

h(3) : LAL̄ΓAL (8.8)

h(4) : LALBL̄ΓABL, λεa1···a4L
a1 · · ·La4 (8.9)

h(7) : LA1 · · ·LA5L̄ΓA1···A5L, λεa′
1···a

′
7
La′

1 · · ·La′
7 (8.10)

h(8) : LA1 · · ·LA6L̄ΓA1···A6L (8.11)

where LAL̄ΓAL stands for two candidates LaL̄ΓaL and La′

L̄Γa′L, and so on. For example,

h(4) is of the form

h(4) = c1L
aLbL̄ΓabL + c2L

aLa′

L̄Γaa′L + c3L
a′

Lb′L̄Γa′b′L + c4λεa1···a4L
a1 · · ·La4 .(8.12)

Next we are going to find h(k) satisfying (8.4) and (8.5). The first step for this is to find a

closed form dh(k) = 0 in (8.4). h(k) can be a closed form only when k = 4. This is due to

the Fierz identity

(CΓAB)(αβ(CΓB)γδ) = 0 . (8.13)

The coefficients are fixed by the closedness condition dh(4) = 0 as

h(4) = c
[1

2
LALBL̄ΓABL − 6λ

4!
εa1···a4L

a1 · · ·La4

]
(8.14)

where ε0123 = −ε\123 = +1. As seen in appendix B, the overall coefficient c is fixed by

the requirement of the κ-invariance [48, 50] of the total action S as c = −1 for Lorentzian

brane and c = i for Euclidean brane: c = i
√

s. Using h(4) above, the closed four-form h4 is

constructed as

h4 = h(4). (8.15)

Because h4 is not exact on the superspace as will be shown below, we find that the M2-brane

action in AdS4/7×S7/4 is a non-trivial element of CE cohomology of the differential alge-

bra (6.5), MC equations for super-AdS4/7×S7/4 algebra. The obtained action is consistent

with one given in [50].
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Next we introduce dH to the differential algebra (6.5). Since H = dB + C3 and

h4 = c′dC3 with a constant c′, dH is given by

c′dH = h4 = h(4) (8.16)

where h(4) is given in (8.14). If we can construct h(7) satisfying (8.5), then h7 turns out

to be a closed seven-form. We find that using (8.14) and (8.16) the condition (8.5) fixes

coefficients of a linear combination of candidates as

h(7) = c2
[ 1

5!
LA1 · · ·LA5L̄ΓA1···A5L − 6λ

7!
εa′

1···a
′
7
La′

1 · · ·La′
7

]
(8.17)

where ε4...9\ = −ε4...90 = +1 and c′ ≡ −c. To see this we have used the Fierz identity,

(CΓA1···A5)(αβ(CΓA5)γδ) − 3(CΓ[A1A2)(αβ(CΓA3A4])γδ) = 0. (8.18)

The closed seven-form is constructed using (8.14) and (8.17) as

h7 = h(7) − c

2
h(4)H. (8.19)

Because h7 is not exact on the superspace as will be shown below, we find that M5-brane

action in AdS4/7×S7/4 is characterized as a non-trivial element of CE cohomology on the

differential algebra (6.5) and (8.16). The constant c2 is determined by the requirement

that the total action is κ-invariant [49, 51] as c2 = −1 and i for Lorentzian and Euclidean

branes respectively, i.e. c2 = α2 = i
√

s. See appendix B. The obtained action is consistent

with one given in [51].

We show that the four- and seven-forms obtained above are not exact. Suppose that

h4 is exact, then there must exist b(3) such that h(4) = db(3). b(3) can be written as

λl(LA)m(Lα)n where integers l,m and n are restricted by the properties of b(3), dim b(3) = 3

and deg b(3) = 3. This implies that l ≤ 0. We find that there is no candidate for l = 0. For

l = −1, we find two candidates, λ−1LaL̄ΓaL and λ−1La′

L̄Γa′L, but any linear combination

of them does not satisfy h(4) = db(3). It is obvious that terms with l ≤ −2 do not satisfy

h(4) = db(3). Thus, h4 is not exact. Next, suppose that h7 is exact, then there exists b6 such

that h7 = db6. This implies, expanding b6(L
µ, Lα,H) as b(6)(LA, Lα)+ 1

2Hb(3)(LA, Lα), that

h(7) = db(6) − c

2
dHb(3), h(4) = −db(3). (8.20)

Because we have shown that h(4) is not exact, there dose not exist b(3) satisfying (8.20).

Thus, we have shown that h7 is not exact.

Summarizing we find that actions of M2- and M5-branes in AdS4/7×S7/4 are charac-

terized as non-trivial elements of the CE cohomology.

8.2 (p + 1)-dimensional form of the WZ term

We derive (p + 1)-dimensional form of the WZ-term following [51].
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The supervielbein and super spin connection are given in appendix A.2. These satisfy

the following differential equations

∂tL̂
A = −2θ̄ΓAL̂ , (8.21)

∂tL̂
AB = 2λθ̄Γ̂ABL̂ , (8.22)

∂tL̂ = dθ − λ

2
L̂AΓ̂Aθ +

1

4
L̂ABΓABθ , (8.23)

where the symbols with “hat” imply that the fermionic variable θ is rescaled as θ → tθ .

By using these equations, one finds that

∂tĥ4 = db3 , b3 = −cL̂AL̂B ˆ̄LΓABθ . (8.24)

This implies that

h4 = dC3 , C3 =

∫ 1

0
dt b3 + C(3) (8.25)

where C(3) is a bosonic 3-form satisfying dC(3) = h4|bosonic. It follows from

−cH = dB +

∫ 1

0
dt b3 + C(3) (8.26)

that

−c∂tĤ = b3 . (8.27)

In the similar way, one derives

∂tĥ7 = d(b6 −
c

2
b3Ĥ) , b6 = c2 2

5!
L̂A1 · · · L̂A5 ˆ̄LΓA1···A5θ (8.28)

so that

h7 = dC6 , C6 =

∫ 1

0
dt (b6 −

c

2
b3Ĥ) + C(6) (8.29)

where C(6) is a bosonic 6-form satisfying dC(6) = h7|bosonic.

Summarizing the (p + 1)-dimensional form of the WZ term is given as

LM2
WZ = −i

√
s

∫ 1

0
dt L̂AL̂B ˆ̄LΓABθ + C(3) , (8.30)

LM5
WZ = i

√
s

∫ 1

0
dt

(
2

5!
L̂A1 · · · L̂A5 ˆ̄LΓA1···A5θ − 1

2
L̂AL̂B ˆ̄LΓABθ Ĥ

)
+ C(6) . (8.31)

9. Non-relativistic branes in AdS4/7×S7/4

We consider the non-relativistic limit of the branes in AdS4/7×S7/4 obtained in the previous

section.
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We scale coordinates and the tension as

XA → ΩXA , θ− → Ωθ− , (9.1)

T = TNRΩ−2 , H = ΩH1 . (9.2)

(9.1) is consistent with (6.3). As can be seen from the concrete expression of the supercur-

rents given in appendix A.2, the supercurrents are expanded as (5.3). Expanding LAB as

in (5.4) and substituting (5.3) and (5.4) into the MC equation (6.5), one finds that Cartan

one forms {LĀ
m,L

A
m,LĀB̄

m ,L
ĀB
m ,L

AB
m , L±m |m = 0, 1} form the MC equation (6.14)-(6.22).

9.1 M2-brane

First we consider an M2-brane. The NG part LNG is expanded as in (5.15) with (5.16)

and (5.17). By using (6.14) and L+ = ML+ with (6.6), one derives

dLdiv
NG = d(det(LĀ

0 )id
3ξ) = − i

√
s

2!
L

Ā1
0 L

Ā2
0 L̄+0ΓĀ1Ā2

L+0 . (9.3)

Since

M ′ΓĀB̄ = ΓĀB̄M , (9.4)

the four-form h4 is expanded as

Th4 = TNRΩ−2hdiv
4 + TNRhfin

4 + O(Ω4) , (9.5)

with

hdiv
4 =

i
√

s

2
LĀ

0 LB̄
0 L̄+0ΓĀB̄L+0 , (9.6)

hfin
4 =

i
√

s

2

[
LĀ

0 LB̄
0 L̄−1ΓĀB̄L−1 + 2LĀ

0 LB̄
0 L̄+0ΓĀB̄L+2 + 2LĀ

0 LB̄
2 L̄+0ΓĀB̄L+0

+4LĀ
0 L

B
1 L̄+0ΓĀBL−1 + L

A
1 L

B
1 L̄+0ΓABL+0

−6λδ(2,1)εā1ā2a3a4
eā1
0 eā2

0 e
a3
1 e

a4
1

]
. (9.7)

This implies that the bosonic 3-form C3 is expanded as

TdC(3) = TNRΩ−2dC
(3)
0 + TNRdC

(3)
2 + O(Ω2) , (9.8)

dC
(3)
0 = 0 , (9.9)

dC
(3)
2 = −3i

√
sλδ(2,1)εā1ā2a3a4

eā1
0 eā2

0 e
a3
1 e

a4
1 . (9.10)

Since

d(det(LĀ
0 )id

3ξ) + hdiv
4 = 0 , (9.11)

the fermionic contribution of Ldiv
NG and Ldiv

WZ cancel each other. In order to delete the

bosonic terms of Ldiv
NG + Ldiv

WZ, we choose

C
(3)
0 = − 1

3!
εĀ0Ā1Ā2

eĀ0
0 eĀ1

0 eĀ2
0 . (9.12)

– 41 –



J
H
E
P
1
0
(
2
0
0
6
)
0
7
8

It follows from the expressions given in appendix A.2 that dC
(3)
0 = 0. In summary, we find

that the gluing matrix M leads to the consistent non-relativistic limit of the M2-brane in

AdS4/7×S7/4.

The non-relativistic M2-brane action is given as

SNR = TNR

∫

Σ
[Lfin

NG + Lfin
WZ] (9.13)

with (5.17) and

Lfin
WZ = −i

√
s

∫ 1

0
dt

[
L̂Ā

0 L̂B̄
0 ( ˆ̄L−1ΓĀB̄θ− + ˆ̄L+2ΓĀB̄θ+) + 2L̂Ā

0 L̂B̄
2

ˆ̄L+0ΓĀB̄θ+

+2L̂Ā
0 L̂

B
1 ( ˆ̄L−1ΓĀBθ+ + ˆ̄L+0ΓĀBθ−) + L̂

A
1 L̂

B
1

ˆ̄L+0ΓABθ+

]
+ C

(3)
2 (9.14)

The bosonic contribution is
∫

Σ
C

(3)
2 = −3i

√
sλδ(2,1)

∫

Σ
volΣ2εaby

adyb

= −3i
√

sλδ(2,1)

∫
d3ξ

√
s det g0εaby

a∂i′y
b

where i′ represent worldvolume directions in S7 or AdS7.

The t-integration is easily done after fixing the κ-gauge symmetry by θ+ = 0 (see

appendix B), which leads to

LĀ
0 = eĀ

0 , LĀ
2 = eĀ

2 − θ̄−ΓĀDθ− , L
A
1 = e

A
1 ,

L−1 = Dθ− = dθ− − λ

2
eĀ
0 Γ̂Āθ− +

1

4
ωĀB̄ΓĀB̄θ− ,

(g0)ij = (eĀ
0 )i(e

B̄
0 )jηĀB̄ . (9.15)

(eĀ
0 )i is the vielbein on the worldvolume in the static gauge, xĀ = ξi. Substituting these

into the non-relativistic action we obtain

SNR = TNR

∫
d3ξ

√
s det g0

[
gij
0 ∂iy

A∂iy
BηAB +

ε2λ2

2
(4my2 − ny′

2
) − 2θ̄−γiDiθ−

]

+TNR

∫

Σ
C

(3)
2 . (9.16)

In the flat limit λ → 0, this reproduces the non-relativistic action given in [11].

9.2 M5-brane

Next we consider an M5-brane for which c2 = i
√

s. In this case the gluing matrix

M =
√
−sΓĀ0···Ā5 , M ′ = −M (9.17)

satisfies

M ′ΓB̄1B̄2
= −ΓB̄1B̄2

M , (9.18)
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so that H is of order Ω

H = ΩH1 + O(Ω3) ,

H1 = H1 +

∫ 1

0
dt

[
L̂Ā

0 L̂B̄
0 ( ˆ̄L+0ΓĀB̄θ− + ˆ̄L−1ΓĀB̄θ+) + 2L̂Ā

0 L̂
B
1

ˆ̄L+0ΓĀBθ+

]
. (9.19)

The PST part LPST is expanded as

TLPST = TNRΩ−2Ldiv
PST + TNRLfin

PST + O(Ω4) (9.20)

with

Ldiv
PST =

√
s det g0d

6ξ , (9.21)

Lfin
PST =

√
s det g0d

6
[1

2
gij
0 (g2)ij +

1

2
(H−

1 )ij(H∗
1)

ij
]

(9.22)

where g0 and g2 are given in (5.18) and (5.19), and H−
1 is defined as

H−
1 =

c2

2
(H1 + c2H∗

1) . (9.23)

Noting that

M ′ΓB̄1···B̄5
= ΓB̄1···B̄5

M , (9.24)

h7 is expanded as

Th7 = TNRΩ−2hdiv
7 + TNRhfin

7 + O(Ω3) (9.25)

with

hdiv
7 = i

√
s

1

5!
L

Ā1
0 · · ·LĀ5

0 L̄+0ΓĀ1···Ā5
L+0 (9.26)

and

hfin
7 = h

(7)
2 − c

2
H1h

(4)
1 , (9.27)

h
(7)
2 =

i
√

s

5!

[
L

Ā1
0 · · ·LĀ5

0 L̄−1ΓĀ1···Ā5
L−1 + 2LĀ1

0 · · ·LĀ5
0 L̄+0ΓĀ1···Ā5

L+2

+10LĀ1
0 · · ·LĀ4

0 L
A5
1 L̄+0ΓĀ1···Ā4A5

L−1 + 5LĀ1
0 · · ·LĀ4

0 LĀ5
2 L̄+0ΓĀ1···Ā5

L+0

+20LĀ1
0 · · ·LĀ3

0 L
A4
1 L

A5
1 L̄+0ΓĀ1···Ā3A4A5

L+0

−δ(1,5)6λεā′
1···ā

′
5a′

6a′
7
L

ā′
1

0 · · ·Lā′
5

0 L
a′
6

1 L
a′
7

1

]
, (9.28)

h
(4)
1 = c

[
LĀ

0 LB̄
0 L̄+0ΓĀB̄L−1 + LĀ

0 L
B
1 L̄+0ΓĀBL+0

−δ(3,3) 6λ

3!
εā1ā2ā3a4

L
ā1
0 L

ā2
0 L

ā3
0 L

a4
1

]
. (9.29)

This implies that the bosonic 6-form C(6) is expanded as

TdC(6) = TNRΩ−2dC
(6)
0 + TNRdC

(6)
2 + O(Ω2) , (9.30)

dC
(6)
0 = 0 , (9.31)

dC
(6)
2 = −6c2

5!
δ(1,5)εā′

1···ā
′
5a′

6a′
7
e
ā′
1

0 · · · eā′
5

0 e
a′
6

1 e
a′
7

1 +
c2

2
λδ(3,3)εā1···ā3a4

eā1
0 · · · eā3

0 e
a4
1 H1 . (9.32)
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Since

dLdiv
PST = d(det(LĀ

0 )id
6ξ) = −hdiv

7 , (9.33)

the fermionic contribution of Ldiv
PST+Ldiv

WZ cancels out. The bosonic term of Ldiv
PST, 1

6!εĀ0···Ā5

eĀ0
0 · · · eĀ5

0 , is deleted by choosing

C
(6)
0 = − 1

6!
εĀ0···Ā5

eĀ0
0 · · · eĀ5

0 (9.34)

which satisfies dC
(6)
0 = 0. In summary, we find that the gluing matrix M leads to the

consistent non-relativistic limit of the M5-brane in AdS4/7×S7/4.

The non-relativistic M5-brane action is composed of Lfin
PST in (9.22) and

Lfin
WZ = c2

∫ 1

0
dt

[( 2

5!
L̂

Ā1
0 · · · L̂Ā5

0 ( ˆ̄L−1ΓĀ1···Ā5
θ− + ˆ̄L+2ΓĀ1···Ā5

θ+)

+
2

4!
L̂

Ā1
0 · · · L̂Ā4

0 L̂
A5
1 ( ˆ̄L−1ΓĀ1···Ā4A5

θ+ + ˆ̄L+0ΓĀ1···Ā4A5
θ−)

+
2

3!
L̂Ā1

0 · · · L̂Ā3
0 L̂

A4
1 L̂

A5
1

ˆ̄L+0ΓĀ1···Ā3A4A5
θ+

+
2

4!
L̂

Ā1
0 · · · L̂Ā4

0 L̂
Ā5
2

ˆ̄L+0ΓĀ1···Ā5
θ+

)

+
1

2

(
L̂Ā

0 L̂B̄
0 ( ˆ̄L+0ΓĀB̄θ− + ˆ̄L−1ΓĀB̄θ+) + 2L̂Ā

0 L̂
B
1

ˆ̄L+0ΓĀBθ+

)
Ĥ1

]

+C
(6)
2 . (9.35)

The bosonic contribution is
∫

Σ
C

(6)
2 = 6c2λδ(1,5)

∫

Σ
volΣ′

5
εa′b′y

a′

dyb′ + 3c2λδ(3,3)

∫

Σ
volΣ3yH1

= 3i
√

sλ

∫
d6ξ

√
s det g0

[
2δ(1,5)εa′b′y

a′

∂ξy
b′ − δ(3,3)∂i′y(∗B1)

i′
]

(9.36)

where ξ and i′ represent coordinates on Σ1 and Σ′
3 respectively, and y is the transverse

direction in AdS4 or S4. ∗ means the Hodge dual in Σ′
3.

Let us fix the κ-symmetry by θ+ = 0. The θ-dependent term in H disappears and

so we have H1 = H1 in this gauge. The t-integration is easily done, and the action is

drastically simplified as

Lfin
PST = d6ξ

√
s det g0

[
− θ̄−γiDiθ− +

1

2
gij
0 ∂iy

A∂jy
BηAB

+
1

2
(H−

1 )ij(H
∗
1 )ij +

ε2λ2

2
(4my2 − ny′

2
)
]
, (9.37)

Lfin
WZ =

∫ 1

0
dt c2 2

5!
eĀ1
0 · · · eĀ5

0 D(tθ̄−)ΓĀ1···Ā5
θ− + C

(6)
2

= d6ξ
√

s det g0

[
−θ̄−γiDiθ−

]
+ C

(6)
2 . (9.38)
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Combining these results, we obtain the non-relativistic M5-brane action

SNR = TNR

∫
d6ξ

√
s det g0

[1

2
gij
0 ∂iy

A∂jy
BηAB +

ε2λ2

2
(4my2 − ny′

2
)

+
1

2
(H−

1 )ij(H
∗
1 )ij − 2θ̄−γiDiθ−

]
+ TNR

∫

Σ
C

(6)
2 . (9.39)

In the flat limit λ → 0, it is reduced to the linearized M5-brane action considered in [52].

10. Summary and discussions

We have derived the NH superalgebra for AdS branes as IW contractions of the super-

AdS×S algebras in ten- and eleven-dimensions. Requiring that the isometry on the AdS

brane worldvolume and the Lorentz symmetry in the transverse space extend to the super-

isometry, we classified possible branes. The NH superalgebra contains the super-isometry

as a super-subalgebra: su(2|2)× su(2|2), osp(4|4), osp(6|2)×psu(2|1) and variants of them

for non-relativistic AdS branes in AdS5×S5, and osp(4|2) × osp(4|2), osp(6|2) × so(2|2),
sp(4|2)× osp(4|2), osp(8|2)× su(2) and variants of them for non-relativistic AdS M-branes

in AdS4/7×S7/4. The possible branes are summarized in table 1 and 4. These contain

1/2 BPS branes obtained by examining an open superstring in AdS5×S5 and an open

supermembrane in AdS4/7×S7/4. We applied the similar analyses to branes in IIB pp-wave

and M pp-wave. The possible branes are summarized in table 2, 3, 5 and 6 and we derived

the NH superalgebras of these pp-wave branes. It is interesting to apply our procedure to

more general cases such as [53].

The WZ terms of AdS branes in ten- and eleven-dimensions are examined by using the

CE cohomology on the super-AdS×S algebras. We find that WZ terms of the AdS branes

in AdS5×S5 and AdS4/7×S7/4 are non-trivial elements of the CE cohomology except for

those of strings in AdS5×S5.

By taking the non-relativistic limit of the relativistic brane actions obtained above, we

derived non-relativistic Dp-brane actions in AdS5×S5 and non-relativistic M-brane actions

in AdS4/7×S7/4. We have seen that there exists the consistent non-relativistic limit for

Dp(even,even) for p = 1 mod 4 and Dp(odd,odd) for p = 3 mod 4 in AdS5×S5, and

M2(0,3), M2(2,1), M5(1,5) and M5(3,3) in AdS4×S7 and S4 × AdS7. We derived the

non-relativistic actions for these branes.

In the flat limit, the non-relativistic AdS Dp- and M2-brane actions are reduced to non-

relativistic flat brane actions [12, 11]. The non-relativistic AdS M5-brane action is reduced

to the linearized M5-brane action [52]. It is interesting to examine these non-relativistic

AdS brane actions further, but is left for future investigations.

It is also interesting to examine the non-relativistic limit of branes in the pp-wave. It

is known that the pp-wave superalgebra is an IW contraction of the AdS superalgebra.

So, the brane actions in the pp-wave can be derived from those in the AdS background by

expanding supercurrents with respect to the contraction parameter Λ as was presented in

appendix C. Once having derived the brane action in the pp-wave one can easily extract the

non-relativistic brane actions. These actions can be also derived from the non-relativistic
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actions derived in the present paper by expanding supercurrents with respect to the con-

traction parameter Ω. We hope to report these points elsewhere in near future.
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A. LI Cartan one forms

A.1 AdS5×S5

Supervielbeins on the AdS5 ×S5 can be obtained via the coset construction with the coset

supermanifold:

AdS5 × S5 ∼ PSU(2, 2|4)
SO(1, 4) × SO(4)

. (A.1)

We parametrize the group manifold as

g = gxgθ , gθ = eQθ , Q = (Q1, Q2) , θ =

(
θ1

θ2

)
. (A.2)

where gx is concretely specified later. The supervielbeins LA and Lα, and super spin

connection LAB are the LI Cartan one forms defined by

g−1dg = LAPA +
1

2
LABJAB + QαLα , (A.3)

g−1
x dgx = eAPA +

1

2
ωABJAB , (A.4)

where eA and ωAB are the vielbein and the spin connection of the AdS5×S5. After some

algebra, we obtain6

LA = eA + 2i

∞∑

n=1

θ̄ΓAM2n−2

(2n)!
Dθ = eA + 2iθ̄ΓA

(
coshM− 1

M2

)
Dθ , (A.5)

Lα =

∞∑

n=0

M2n

(2n + 1)!
Dθ =

sinhM
M Dθ , (A.6)

LAB = ωAB − 2iλθ̄Γ̂ABiσ2

∞∑

n=1

M2n−2

(2n)!
Dθ = ωAB − 2iλθ̄Γ̂ABiσ2

coshM− 1

M2
Dθ (A.7)

6The differential d acts as d(F ∧G) = dF ∧G+(−1)fF ∧dG (where f is the degree of F ), and commutes

with θ.
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with

M2 = iλ

(
Γ̂Aiσ2θ θ̄ΓA − 1

2
ΓABθ θ̄Γ̂ABiσ2

)
, (A.8)

Dθ = dθ +
λ

2
eAΓ̂Aiσ2θ +

1

4
ωABΓABθ , (A.9)

Γ̂A = (−ΓaI,Γa′J ) , Γ̂AB = (−ΓabI,Γa′b′J ) . (A.10)

The bosonic subalgebra is a direct product of so(2,4) and so(6), and so we may consider

these parts separately. For an (m,n)-brane, it is convenient to parametrize the group

manifold on the so(2,4) algebra as

gAdS = gNeyaPa , gN = exāmPām · · · exā1Pā1 . (A.11)

For this parametrization, we obtain

eā` = eā`

N cosh ry , ` = 1, 2, . . . ,m ,

ea =

(
sinhY

Y
dy

)a

,

ωākā` = ωākā`

N ,

ωaā` = −λ2ya sinh ry

ry
eā`

N ,

ωab = −2λ2y[a

(
cosh Y − 1

Y 2
dy

)b]

, (A.12)

where r2
y = λ2yaybηab = λ2y2 and (Y 2)ab = λ2(y2δ

a
b − yayb). eN and ωN defined by

g−1
N dgN = eā

NPā +
1

2
ωāb̄

N Jāb̄ (A.13)

are obtained as

eā`

N = cosh r1 · · · cosh r`−1dxā` ,

ωākā`

N = −λ2xāk
sinh rk

rk
cosh rk+1 · · · cosh r`−1dxā` , k < ` (A.14)

where r2
` = λ2xā`xā`ηā`ā`

.

The vielbein ea′

and the spin connection ωa′b′ of S5 are obtained as those of AdS5 with

the replacement

λ2 → −λ2 , ā → ā′ , a → a′ , m → n . (A.15)

Under the scaling with Ω defined in (5.1), the above vielbeins and spin connections are

expanded as

eā` = eā`
0 + Ω2eā`

2 + O(Ω4) , eā`
0 = eā`

N , eā`
2 = eā`

N

1

2
r2
y , (A.16)

ea = Ωe
a
1 + O(Ω3) , e

a
1 = dya (A.17)

ωāk ā` = ωāk ā`
0 , ωākā`

0 = ωāk ā`

N , (A.18)

ωaā` = −Ωλ2yaeā`

N + O(Ω3) , (A.19)

ωab = −2Ω2λ2y[adyb] + O(Ω4) . (A.20)
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A.2 AdS4/7×S7/4

Supervielbeins on the AdS4/7 × S7/4 can be obtained via the coset construction with the

coset supermanifolds:

AdS4 × S7 ∼ OSp(8|4)
SO(3, 1) × SO(7)

, AdS7 × S4 ∼ OSp(8∗|4)
SO(6, 1) × SO(4)

. (A.21)

Parametrizing the manifolds as g(X, θ) = gxeθQ , we obtain the expression of supervielbeins:

LA = eA − 2θ̄ΓA
∑

n=1

M2n−2

(2n)!
Dθ , (A.22)

LAB = ωAB + 2λθ̄Γ̂AB
∑

n=1

M2n−2

(2n)!
Dθ , (A.23)

L =
∑

n=0

M2n

(2n + 1)!
Dθ , (A.24)

where we have introduced the following quantities:

(Dθ)ᾱ ≡ dθ + −λ

2
eAΓ̂Aθ +

1

4
ωABΓABθ ,

M2 = λ(Γ̂Aθ θ̄ΓA +
1

2
ΓABθ θ̄Γ̂AB) ,

Γ̂A = (2IΓa,IΓa′) , Γ̂AB = (2IΓab,IΓa′b′) .

Here eA
M and ωAB

M are the vielbein and the spin connection, respectively.

Since the bosonic subalgebra is the direct product of so(3,2) (so(5)) and so(8)(so(6,2)),

we may consider these parts separately as in the case of AdS5×S5 . For the former group

manifold, a group element is represented by

g4 = gNeyaPa , gN = exāmPām · · · exā1Pā1 . (A.25)

It is straightforward to derive

eā` = eā`

N cosh ry , ` = 1, . . . ,m (A.26)

ea =

(
sinhY

Y
dy

)a

, (A.27)

ωākā` = ωāk ā`

N , (A.28)

ωab = −8ε2λ2ya

(
cosh Y − 1

Y
dy

)b

, (A.29)

ωā`b = 4ε2λ2eā`

N yb sinh ry

ry
(A.30)

with

eā`

N = dxā` cosh r1 · · · cosh r`−1 , (A.31)

ωākā`

N = −4ε2λ2xākdxā`
sinh rk

rk
cosh rk+1 · · · cosh r`−1 , k < ` , (A.32)
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where r2
k = 4ε2λ2xākxākηāk āk

, r2
y = 4ε2λ2yaybηab = 4ε2λ2y2 and Y 2 = 4ε2λ2(y2δ

a
b − yayb) .

For the latter group manifold, the vielbein and the spin connection can be obtained from

those for the former case with the replacement

ε2 → −1

4
ε2 , ā → ā′ , a → a′ , m → n . (A.33)

Under the Ω-scaling (9.1), these scale as

eā = eā
0 + Ω2eā

2 + O(Ω4) , eā
0 = eā

N , eā
2 = eā

N

r2
y

2
(A.34)

ea = Ωe
a
1 + O(Ω3) , e

a
1 = dya , (A.35)

ωāb̄ = ωāb̄
0 , ωāb̄

0 = ωāb̄
N , (A.36)

ωab = O(Ω2) , (A.37)

ωāb = Ω4ε2λ2eā
Nyb + O(Ω3) . (A.38)

B. κ-symmetry

B.1 D-branes in AdS5×S5

Here we recall the κ-variation of the action (4.1) by following [36, 40, 41]. Here we consider

both Lorentzian branes and Euclidean branes.

Following (2.6), one can derive a variation of the supercurrents by using the homotopy

formula as follows:

δLA = dδxA + ηBCLBδxCA + ηBCLABδxC − 2iL̄ΓAδθ ,

δL = dδθ − λ

2
δxAΓ̂Aiσ2L +

λ

2
LAΓ̂Aiσδθ ,

δLab = dδxab − 2λ2Laδxb + 2ηcdL
acδxdb + 2iλL̄Γ̂abiσ2δθ ,

δLa′b′ = dδxa′b′ + 2λ2La′

δxb′ + 2ηc′d′L
a′c′δxd′b′ + 2iλL̄Γ̂a′b′iσ2δθ , (B.1)

where

δxA = δZM̂LA
M̂

, δxAB = δZM̂LAB
M̂

, δθα = δZM̂Lα
M̂

. (B.2)

A universal feature of the κ-variation is

δκxA = 0 . (B.3)

By using (B.1), one can find that

δκgij = −4iLA
(iL̄j)ΓAδθ (B.4)

and

δκdF = −2id(LAL̄ΓAσδθ) → δκF = −2iLAL̄ΓAσδθ , (B.5)
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where the exact term is deleted by δκA . By using (B.1) and (B.5), we find that

δκhp+2 = d[Cκ ∧ eF ]p+1 , Cκ =
⊕

`=even

C(`)
κ ,

C(2n)
κ =

2
√

s

(2n − 1)!
LA1 · · ·LA2n−1L̄ΓA1···A2n−1(σ)niσ2δκθ (B.6)

so that

δκLWZ = [Cκ ∧ eF ]p+1 , (B.7)

where [•]p+1 represents the (p + 1)-form part of • .

By using these expressions, one finds that the action (4.1) is invariant under

δκθ = (1 + Γ)κ , (B.8)

Γ =
s
√−s√

s det(g + F)

∑

n=0

1

2nn!
γj1k1···jnknFj1k1 · · · Fjnkn

×(−1)n(σ)n−
p−3
2 iσ2

1

(p + 1)!
εi1···ip+1γi1···ip+1 , (B.9)

where γi = LA
i ΓA .

Under the Ω-scaling, Γ is expanded as

Γ = Γ0 + O(Ω) , (B.10)

Γ0 =
s
√−s√
s det g0

1

(p + 1)!
εi1···ip+1(LĀ0

0 )i1 · · · (L
Āp

0 )ip+1ΓĀ0···Āp
(σ)−

p−3
2 iσ2

= M . (B.11)

Expanding κ as

κ = κ+ + Ωκ− , κ± = P±κ± (B.12)

leads to

δκθ+ = (1 + Γ0)κ+ = 2κ+ . (B.13)

This implies that the κ-symmetry can be gauge fixed by choosing θ+ = 0 ince δκθ+|θ+=0 =

2κ+ [15].

For an F-string, we obtain the similar expression with σ = −σ1 and F = 0. Hence the

action is κ-invariant, and the κ-gauge symmetry is fixed by θ+ = 0 .

B.2 M-branes in AdS4/7×S7/4

Following [48, 49, 51], we recall the κ-symmetry of the M-brane actions. Here we shall

consider Euclidean branes as well as Lorentzian branes.
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A variation of the supercurrents is derived from (6.5) as

δLA = dδxA − ηBCδxABLC + ηBCLABδxC + 2L̄ΓAδθ ,

δLab = dδxab + 8ε2λ2Laδxb + 2ηcdL
caδxbd − 2λL̄Γ̂abδθ ,

δLa′b′ = dδxa′b′ − 2ε2λ2La′

δxb′ + 2ηc′d′L
c′a′

δxb′d′ − 2λL̄Γ̂a′b′δθ ,

δL = dδθ +
1

2
δxAΓ̂AL − λ

2
LAΓ̂Aδθ − 1

4
δxABΓABL +

1

4
LABΓABδθ , (B.14)

where δxA, δxAB and δθ have been defined in (B.2). For the κ-variation, we require that

δκxA = 0.

B.2.1 M2-brane

Let us first consider the case of an M2-brane. From (B.14), one can obtain

δκgij = 4LA
(iL̄j)ΓAδκθ , (B.15)

and

δκh4 = d(−cLALBL̄ΓABδκθ) → δκLM2
WZ = −cLALBL̄ΓABδκθ . (B.16)

By using them one can see that the action (8.1) is invariant under

δκθ = (1 + Γ)κ , Γ =
i
√

s√
s det g

1

3!
εijkγijk . (B.17)

Under Ω-scaling, Γ is expanded as

Γ = Γ0 + O(Ω) , Γ0 = i
√

sΓĀ0Ā1Ā2
= M . (B.18)

By expanding κ as (B.12), we derive

δκθ+ = (1 + Γ0)κ+ = 2κ+ (B.19)

which implies that the κ-gauge symmetry is fixed by θ+ = 0.

B.2.2 M5-brane

Next, we consider the case of an M5-brane. A variation of H is taken with (B.14) as follows:

−cδκdH = δκh4 = d(−cLALBL̄ΓABδκθ) → δκH = LALBL̄ΓABδκθ , (B.20)

where the exact term is deleted by δκB . Noting that

δκh7 = c2d
[ 2

5!
LA1 · · ·LA5L̄ΓA1···A5δκθ +

1

2
LALBL̄ΓABδκθH

]
, (B.21)

we see that

δκLWZ = c2
[ 2

5!
LA1 · · ·LA5L̄ΓA1···A5δκθ +

1

2
LALBL̄ΓABδκθH

]
, (B.22)
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where c2 = i
√

s . The κ-invariance of the action is shown by following [51] (see also [52]).

By using the expressions derived above and the following useful relations

γ̄ =
s
√−s

6!
√

s det g
εi1···i6γi1···i6 , γ̄2 = 1 ,

εi1···i6−nj1···jnγj1···jn = (−1)[
6−n

2
]n!

s
√−s√
s det g

γi1···i6−n γ̄ ,

εi1···i6−nk1···knεj1···j6−nk1···kn
= sn!(6 − n)!δi1

[j1
· · · δi6−n

j6−n] ,

Hijk = 3H[ijvk] −
s

2

√
s det g εijklmnH∗lmvn , (B.23)

it is shown that the M5-brane action is invariant under the κ-variation

δκθ = (1 + Γ)κ , δκa = 0 , (B.24)

Γ =

√
s det g√

s det(g − ic2H∗)

(
γ̄ − c2

2
H∗

ijvkγ
ijk − sc2

16
√

s det g
εi1···i6H∗

i1i2H∗
i3i4γi5i6

)
. (B.25)

Under the Ω-scaling, Γ is expanded as

Γ = Γ0 + O(Ω) , (B.26)

Γ0 =
s
√−s√
s det g0

1

6!
εi1···i6(LĀ1

0 )i1 · · · (LĀ6
0 )i6ΓĀ1···Ā6

= s
√
−sΓĀ0···Ā5

= M , (B.27)

which implies that

δκθ+ = (1 + Γ0)κ+ = 2κ+ . (B.28)

Thus the κ-symmetry is gauge fixed by θ+ = 0 .

C. Penrose limit of brane actions

Here we will construct the action of D-branes and M-branes on pp-wave backgrounds via

the Penrose limit, instead of non-relativistic limit. This is a natural application of our

procedure. The Penrose limit of an alternative action of an AdS superstring has been

discussed in [25]. The result includes Metsaev’s results for F-string [54] and D3-brane [55]

on the maximally supersymmetric pp-wave.

C.1 Branes in IIB pp-wave

We derive the Dp-brane action in the IIB pp-wave from the Dp-brane action in AdS5×S5

S = T

∫
LDBI + LWZ ,

LDBI =
√

s det(g + F)dp+1ξ , dLWZ = hp+2 =
∑

n=0

h(p+2−2n)Fn ,

h(2n+1) =
c

(2n − 1)!

[
LA1 · · ·LA2n−1L̄ΓA1···A2n−1σ

n+1%L

+ δn,2
i

5
λ
(
εa1···a5L

a1 · · ·La5 − εa′
1···a

′
5
La′

1 · · ·La′
5
)]

(C.1)
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where σ = σ3 and % = σ1. c =
√

s is required by the κ-invariance of the action.

The Penrose limit considered in section 3 is equivalent to scaling the coordinates as

X+ → Λ2X+ , X î → ΛX î , θ+ → Λθ+ (C.2)

and taking the limit Λ → 0. Under the scaling, LI Cartan one-forms are expanded as

L+ =
∑

n=0

Λ2n+2L+
2n+2 , Lî =

∑

n=0

Λ2n+1Lî
2n+1 , Lî

∗ =
∑

n=0

Λ2n+1Lî
∗2n+1 ,

L+ =
∑

n=0

Λ2n+1L+2n+1 (C.3)

where

L± =
1√
2
(L9 ± L0) , L± = `±L± , Lî

∗ = (L0i,L9i′) . (C.4)

Under the expansion (C.3), we derive

gij = Λ2g
(pp)
ij + O(Λ4) , g

(pp)
ij = 2(L+

2 )i(L
−
0 )j + (Lî

1)i(L
ĵ
1)jηîĵ . (C.5)

It follows from7

dF = Λ2[−iL+L̄−Γ+σL− − iL−L̄+Γ−σL+ − 2iLîL̄+ΓîσL−] (C.6)

that

F = Λ2Fpp + O(Λ4) (C.7)

where we assume that F = Λ2Fpp . These imply that

LDBI = Λp+1Lpp
DBI + O(Λp+3) , Lpp

DBI =
√

s det(gpp + Fpp)dp+1ξ . (C.8)

The factor Λp+1 is absorbed into the definition of the tension as

T = Λ−(p+1)Tpp . (C.9)

One finds that the fermionic part of h(2n+1) is scaled as

h(2n+1)|fermionic = Λ2nh(2n+1)
pp |fermionic + O(Λ2n+2) , (C.10)

h(2n+1)
pp |fermionic =

c

(2n − 1)!
LA1 · · ·LA2n−1L̄ΓA1···A2n−1σ

n+1
3 σ1L

=
c

(2n − 1)!
Lî1 · · ·Lî2n−1(L̄+Γî1···̂i2n−1

σn+1
3 σ1L−

+L̄−Γî1···̂i2n−1
σn+1

3 σ1L+)

+
c

(2n − 2)!
L+Lî1 · · ·Lî2n−2L̄−Γ+î1···̂i2n−2

σn+1
3 σ1L−

+
c

(2n − 2)!
L−Lî1 · · ·Lî2n−2L̄+Γ−î1···̂i2n−2

σn+1
3 σ1L+

+
c

(2n − 3)!
L+L−Lî1 · · ·Lî2n−3(L̄−Γî1···̂i2n−3

σn+1
3 σ1L+

−L̄+Γî1···̂i2n−3
σn+1

3 σ1L−) . (C.11)

7
L

+, L
−, L

î, L+ and L− are understood as L
+
2 , L

−

0 , L
î
1, L+1 and L−0 respectively below.
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For the bosonic part, we derive

h(5)|bosonic = Λ4h(5)
pp |bosonic + O(Λ6) , (C.12)

h(5)
pp |bosonic = −ic

4λ√
2
L−(L1L2L3L4 + L5L6L7L8) . (C.13)

The O(Λ6)-term which contains L+ disappears in the limit.

To summarize the pp-wave Dp-brane action is given as

Spp = Tpp

∫
Lpp

DBI + Lpp
WZ (C.14)

with (C.8) and

hpp
p+2 = dLpp

WZ =
∑

n=0

h(p+2−2n)
pp Fn

pp , (C.15)

h(2n+1)
pp =

c

(2n − 1)!
LA1 · · ·LA2n−1L̄ΓA1···A2n−1σ

n+1%L

−icδn,2
4λ√

2
L−(L1L2L3L4 + L5L6L7L8) . (C.16)

This reproduces the pp-wave D3-brane action given in [55] as the p = 3 case. Let % = σ3

and σ = −σ1 and replace LDBI with LNG or with the Polyakov action, then it is reduced

to the pp-wave F-string action constructed in [54].

The (p+2)-form hpp
p+2 can be shown to be a non-trivial element of the CE cohomology

except for h3 by following the procedure explained in section 4.1. It is easy to obtain the

(p + 1)-dimensional form of the WZ term as was done in section 4.2.

C.2 Branes in M pp-wave

The Penrose limit considered in section 7 is equivalent to scaling the coordinates as (C.2)

and taking the limit Λ → 0. Under the scaling, LI Cartan one-forms are expanded as (C.3)

where we define Cartan one-forms as

L± =
1√
2
(L\ ± L0) , Lî

∗ =

{
(Li0,Li′\) for AdS4×S7

(Li\,Li′0) for AdS7×S4 , L± = `±L . (C.17)

C.2.1 Penrose limit of M2 brane action

We consider the Penrose limit of the M2-brane action

S = T

∫
LNG + LWZ , (C.18)

LNG =
√

s det g , (C.19)

dLWZ = h4 = c
[1

2
LALBL̄ΓABL − 6λ

4!
εa1···a4L

a1 · · ·La4

]
(C.20)

where c = i
√

s is required by the κ-invariance of the action. Under the expansion (C.3),

LNG is expanded as

LNG = Λ3Lpp
NG + O(Λ5) , Lpp

NG =
√

s det gpp (C.21)
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while dLWZ = h4 is expanded as

h4 = Λ3hpp
4 + O(Λ5) , (C.22)

hpp
4 = c

[1

2
LALBL̄ΓABL +

6λ√
2
L−L1L2L3L4

]
. (C.23)

The Λ3 factor is absorbed into the definition of the tension as T = Λ−3Tpp . The pp-wave

M2-brane action is given as

S = Tpp

∫
Lpp

NG + Lpp
WZ (C.24)

with (C.21) and hpp
4 = dLpp

WZ with (C.23).

C.2.2 Penrose limit of M5-brane action

Next we will consider the M5-brane action

S = T

∫
LPST + LWZ , (C.25)

with

LPST =
√

s det(gij − ic2H∗
ij) + c2

√
s det g

4
H∗ijHij , (C.26)

Hij = Hijkv
k , H∗ij = H∗ijkvk , vi =

∂ia√
gjk∂ja∂ka

,

H = H + C3 , H∗ijk =
1

3!
√

s det g
εijklmnHlmn , H = dB

and

dLWZ = h7 , h7 = h(7) − c

2
h(4)H , (C.27)

h(4) = c
[1

2
LALBL̄ΓABL − 6λ

4!
εa1···a4L

a1 · · ·La4

]
, (C.28)

h(7) = c2
[ 1

5!
LA1 · · ·LA5L̄ΓA1···A5L − 6λ

7!
εa′

1···a
′
7
La′

1 · · ·La′
7

]
, (C.29)

−cdH = h(4) (C.30)

with c2 = i
√

s for the κ-invariance of the action.

Observe that under the expansion (C.3),

a = app , vi = Λvpp
i + O(Λ3) , Hijk = Λ3Hpp

ijk + O(Λ5) , Hij = Λ2Hpp
ij + O(Λ4) ,

H∗ijk = Λ−3H∗ijk
pp + O(Λ−1) , H∗

ij = Λ2H∗pp
ij + O(Λ4) (C.31)

where we assume that H = Λ3Hpp . These imply that

LPST = Λ6Lpp
PST + O(Λ8) ,

Lpp
PST =

√
s det(gpp

ij − ic2H∗pp
ij ) + c2

√
s det gpp

4
H∗ij

pp Hpp
ij . (C.32)
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The WZ term h7 is expanded as

h7 = Λ6hpp
7 , hpp

7 = h(7)
pp − c

2
h(4)

pp Hpp , (C.33)

h(7)
pp = c2

[ 1

5!
LA1 · · ·LA5L̄ΓA1···A5L − 6λ√

2
L−L4 · · ·L9

]
, (C.34)

h(4)
pp = c

[1

2
LALBL̄ΓABL +

6λ√
2
L−L1L2L3L4

]
. (C.35)

The Λ6 factor is absorbed into the definition of the tension as T = Λ−6Tpp . The pp-wave

M5-brane action is given as

S = Tpp

∫
Lpp

PST + Lpp
WZ (C.36)

with (C.32) and hpp
7 = dLpp

WZ with (C.33).

Following the procedure explained in section 8.1, one can show that the (p + 2)-form

hpp
p+2 is a non-trivial element of the CE cohomology. The (p + 1)-dimensional form of the

WZ term can be obtained easily as was done in section 8.2.
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